Predicting the Triple Beta-Spiral Fold from Primary Sequence Data Eben

Predicting the Triple Beta-Spiral Fold from Primary Sequence Data Eben

View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace@MIT Predicting the Triple Beta-Spiral Fold from Primary Sequence Data by Eben Louis Scanlon Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degrees of Master of Science in Electrical Engineering/Computer Science and Master of Business Administration at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2004 c Massachusetts Institute of Technology, 2004. All rights reserved. Author.............................................................. Department of Electrical Engineering and Computer Science January 16, 2004 Certified by. Bonnie A. Berger Professor of Applied Mathematics Thesis Supervisor Certified by. Roy E. Welsch Professor of Statistics and Management Thesis Supervisor Accepted by . Arthur C. Smith Chairman, Department Committee on Graduate Students Predicting the Triple Beta-Spiral Fold from Primary Sequence Data by Eben Louis Scanlon Submitted to the Department of Electrical Engineering and Computer Science on January 16, 2004, in partial fulfillment of the requirements for the degrees of Master of Science in Electrical Engineering/Computer Science and Master of Business Administration Abstract The Triple β-Spiral is a novel protein structure that plays a role in viral attachment and pathogenesis. At present, there are two Triple β-Spiral structures with solved crystallographic coordinates – one from Adenovirus and the other from Reovirus. There is evidence that the fold also occurs in Bacteriophage SF6. In this thesis, we present a computational analysis of the Triple β-Spiral fold. Our goal is to discover new instances of the fold in protein sequence databases. In Chapter 2, we present a series of sequence-based methods for the discovery of the fold. The final method in this Chapter is an iterative profile-based search that outperforms existing sequence-based algorithms. In Chapter 3, we introduce specific knowledge of the protein’s structure into our prediction algorithms. Although this additional information does not improve the profile-based methods in Chapter 2, it does provide insight into the important forces that drive the Triple β-Spiral folding process. In Chapter 4, we employ logistic regression to integrate the score infor- mation from the previous Chapter into a single unified framework. This framework outperforms all previous methods in cross-validation tests. We do not discover a great number of additional instances of the Triple β-Spiral fold outside of the Adenovirus and Reovirus families. The results of our profile based templates and score integration tools, however, suggest that these methods might well succeed for other protein structures. Thesis Supervisor: Bonnie A. Berger Title: Professor of Applied Mathematics Thesis Supervisor: Roy E. Welsch Title: Professor of Statistics and Management 2 Acknowledgments The author wishes to acknowledge the Leaders for Manufacturing Program for its support of this work. He would also like to thank Professor Bonnie Berger, Professor Jonathan King, Professor Roy Welsch, and Peter Weigele for their guidance and support. 3 Contents 1 Computational Background 11 1.1Introduction................................ 11 1.2ProteinSequenceDetermination..................... 12 1.3TheProteinFoldingProblem...................... 14 1.4ProteinStructureBasics......................... 15 1.5ProteinDatabases............................. 17 1.6ProteinSequenceAlignments...................... 20 1.6.1 ScoringMatrices......................... 20 1.6.2 AlignmentGaps.......................... 21 1.6.3 AlignmentAlgorithms...................... 23 1.6.4 SequenceSimilarity........................ 26 1.7ProfileMethods.............................. 26 1.7.1 ProfileConstruction....................... 27 1.7.2 PSI-BLAST ............................. 29 1.7.3 ProfileHiddenMarkovModels.................. 30 1.7.4 CalcualtionofE-values...................... 34 1.8OtherProteinStructureTools...................... 35 1.8.1 PROSITE............................. 35 1.8.2 ThreadingMethods........................ 36 1.8.3 MolecularDynamicsandAbInitioMethods.......... 36 1.8.4 BetaWrap............................. 37 1.8.5 Sequence-StructureMethods................... 37 4 2 Sequence Analysis 39 2.1Introduction................................ 39 2.2FoldMorphologyandFunction..................... 40 2.2.1 Triple β-SpiralStructure..................... 40 2.2.2 AdenovirusFamily........................ 42 2.2.3 ReovirusFamily.......................... 45 2.2.4 SequenceAlignments....................... 46 2.2.5 Triple β-SpiralSequenceRepeats................ 49 2.2.6 AutomatedDiscoveryofSequenceRepeats........... 53 2.3 Computational Analysis of the Triple β-Spiral............. 55 2.3.1 Model1:Regular-ExpressionSearch.............. 55 2.3.2 Model 2: PSI-BLAST ....................... 59 2.3.3 Model 3: Pfam ........................... 62 2.3.4 Model4:SingleRepeatProfiles................. 66 2.3.5 Model5:StrictRepeatProfiles................. 68 2.3.6 Model6:IteratedStrictRepeatProfiles............ 71 2.3.7 Model7:IteratedProfileswithCustomInsertions....... 75 2.4AnalysisofSignificantHits........................ 81 2.5 The Swiss-Prot/TrEMBL Database................... 83 2.6Discussion................................. 83 3 Structure Analysis 85 3.1Introduction................................ 85 3.2SimulatedAnnealing........................... 86 3.2.1 TestSequences.......................... 88 3.3ComputingSequenceScoreswithStructuralModels.......... 88 3.3.1 ProfileScore............................ 89 3.3.2 Antiparallel β-StrandPairScore................. 91 3.3.3 Inter-ChainHydrogenBondingScores............. 94 3.4Discussion................................. 96 5 4ScoreIntegration 98 4.0.1 IntegrationFramework...................... 98 4.1Creationofatrainingset......................... 99 4.2LogisticRegressionResults........................ 100 4.3SimulatedAnnealing........................... 102 4.4Discussion................................. 104 A Model 7 Hits 105 B SAS Results 112 B.1AdenovirusModel............................. 112 B.2ReovirusModel.............................. 115 6 List of Figures 1-1Theaminoacids.............................. 13 1-2ProteinSecondaryStructure....................... 17 1-3ATIMBarrel............................... 18 1-4CoiledCoils................................ 18 1-5ProteinSequenceAlignments...................... 21 1-6ExampleDPMatrix........................... 25 1-7AlignedAdenovirusSequences...................... 27 1-8ProfileforAlignedAdenovirusSequences................ 29 1-9AprofileHMM.............................. 31 1-10HMMNullModel............................. 32 1-11 A Sample HMMER File........................... 34 1-12 A Right-Handed Parallel β-Helix.................... 37 2-1 Triple β-SpiralFibers........................... 41 2-2 Triple β-SpiralStructuralRepeats.................... 42 2-3 Triple β-SpiralHydrogenBondingPattern............... 43 2-4Ad2Sequence............................... 45 2-5 Rσ1Sequence............................... 45 2-6 Triple β-Spiralsequencealignments................... 48 2-7 Triple β-SpiralRepeats.......................... 50 2-8 Triple β-SpiralRepeats.......................... 52 2-9PeriodictyFinderResults........................ 54 2-10 Results of RADAR ............................. 54 7 2-11 Pfam AdenovirusFiberTrainingSequences............... 63 2-12 Pfam AdenovirusFiberOutput..................... 65 2-13 Modified Transition Probabilities . ................. 69 2-14 Modified HMM Transition Probabilities ................. 71 2-15AlignmentsGeneratedbyModel5.................... 72 2-16AverageInsertionLengths........................ 74 2-17FinalInsertedResidueScores...................... 77 2-18FalsePDBHits.............................. 78 2-19AlignmentsGeneratedbyModel7.................... 80 2-20 Alignment of LY BPSF6 and VSI1 REOVD Fibers............. 81 3-1SimulatedAnnealing........................... 87 3-2AdenovirusProfileScores......................... 89 3-3ReovirusProfileScores.......................... 90 3-4AdenovirusProfileScoresfromSimulatedAnnealing.......... 90 3-5ReovirusProfileScoresfromSimulatedAnnealing........... 91 3-6 β-StrandPairwiseCorrelationScores.................. 93 3-7 β-StrandScoresfromSimulatedAnnealing............... 94 3-8 Triple β-SpiralInter-chainHydrogenBondingScores......... 95 3-9PairwiseHydrogenBondingScoresfromSimulatedAnnealing.... 96 4-1Adenovirus-BasedScores......................... 101 4-2Reovirus-BasedScores.......................... 102 4-3SimulatedAnnealingLogisticScores.................. 103 8 List of Tables 1.1ProteinSequenceDatabases....................... 20 1.2 The BLOSUM62 scoringmatrix...................... 22 1.3 Background Residue Probabilities . ................. 29 2.1 Triple β-Spiral Fiber Sequences in Swiss-Prot ............. 44 2.2AdenovirusandReovirusSequenceSimilarity............. 47 2.3TemplateSummaryOutputTable.................... 56 2.4 Triple β-SpiralRepeatRegularExpressions............... 57 2.5Model1:RegularExpression....................... 58 2.6 Model 2: PSI-BLAST ........................... 60 2.7 Model 2: PSI-BLAST Complete...................... 61 2.8 Model 3: Pfam ............................... 64 2.9Model4:SingleRepeatHMM...................... 67 2.10Model5:SingleRepeatHMMwithRestrictedInsertions....... 70 2.11 Model 6: Iterated Single Repeat HMM with Restricted Insertions . 73 2.12 Model 7: Iterated Single

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    125 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us