View This Volume's Front and Back Matter

View This Volume's Front and Back Matter

FOUNDATIONS O F POIN T SE T THEOR V This page intentionally left blank http://dx.doi.org/10.1090/coll/013 AMERICAN MATHEMATICA L SOCIETY COLLOQUIUM PUBLICATIONS , VOLUME XIII FOUNDATIONS O F POINT SE T THEOR Y R. L . MOORF . Revised Edition AMERICAN MATHEMATICA L SOCIET Y PROV1DENCE, RHOD E ISLAN D FIRST EDITIO N PUBLISHE D 193 2 COMPLETELY REVISE D AN D ENLARGE D EDITIO N 196 2 2000 Mathematics Subject Classification. Primar y 54-XX . Library o f Congress Catalo g Car d Numbe r 62-832 5 International Standar d Boo k Numbe r 0-8218-1013- 8 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t libranes actin g fo r them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o copy a chapte r fo r us e i n teachin g o r research . Permissio n i s grante d t o quot e brie f passages fro m thi s publicatio n i n reviews , provide d th e customary acknowledgmen t o f the sourc e i s given. Republication, systematic copying, or multipl e reproduction o f any material i n thi s publication i s permitted onl y unde r licens e fro m th e America n Mathematica l Societ y Requests fo r suc h permissio n shoul d b e addresse d t o th e Assistan t t o th e Publishei , American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-624S . Requests ca n als o b e mad e b y e-mail t o reprint-permissionOams.org . © Copyrigh t 196 2 by the America n Mathematica l Society . Reprinted wit h correction s 197 0 Printed i n the Unite d State s o f America . The American Mathematica l Societ y retain s al l rights except thos e granted t o the Unite d State s Government . @ Th e paper use d i n this boo k i s acid-free an d fall s within the guidehne - established to ensure permanence an d durability . Visit the AM S home page at URL : http://ww.ams.org / 12 11 10 9 8 7 0 6 05 04 03 02 01 TABLE O F CONTENT S Pag* Preface ........... vi i Introduction .......... i x Chapter I . Consequence s o f Axiom s 0 and 1 ... ] Chapter II . Consequence s o f Axioms 0 , 1 and 2 . .8 4 Chapter III . Consequence s o f Axioms 0 , 1 , 2 , 3 and 4 . .14 1 Chapter IV . Consequence s o f Axioms 0 and 1- 5 .... 16 2 Chapter V . Uppe r semi-continuou s collection s 1. O n the basi s o f Axiom s 0 , 1 ' an d C . 27 3 2. O n the basi s o f Axiom s 0 , ]' , C, 2 . 3 , 4 and 5 .31 1 3. Equicontinuou s collection s o n the basi s o f Axiom s 0 and 1 .33 1 Chapter VI . Consequence s o f Axiom s 0 , 1 , 2 , 3 , 4 , 5i , Ö2 , 6 and 7 . 33 9 Chapter VII . Concernin g topologica l equivalenc e an d th e intro - duction o f distance ...... 3o 3 Appendix . .37 8 Bibliography 38 2 Glossary . .41 7 This page intentionally left blank PREFACE In thi s revise d editio n ther e i s agai n presente d wha t ma y b e roughl y termed a largel y Belf-containe d treatmen t o f the foundation s o f continuity . or point set-theoretic , analysi s situ s (topology) . AU the numbered proposition s o f Chapter 1 are proved o n the basis o f two axioms ( 0 and 1 ) that hol d true i n a very large dass o f Spaces including man y Spaces that ar e not locall y connected . I f thes e axiom s hol d tru e i n a spac e 2 an d S' i s any inne r limitin g se i i n 2 then , unde r a suitabl e interpretatio n of th e wor d region, the y hol d tru e als o i n a spac e i n whic h point mean s point o f S'. The numbered proposition s o f Chapter II hol d true i n all locally connecte d Spaces tha t satisf y th e first thre e axioms . Thi s das s o f space s include s Euclidean space s o f any finite numbe r o f dimensions, Hubert space , an d th e spaces o f infinitel y man y dimension s whic h Freche t designate s b y th e symbols D w an d E w. I f Axiom s 0 . 1 and 2 hold true i n a space 2 an d S' i s a locally .connected inne r limiting set in 2 then . under a suitable interpretatio n of the word region , they hol d tru e als o i n a space i n whic h the wor d point i s restricted t o mea n poin t o f S'. lt i s shown , i n Chapter s II I an d IV , that , o n th e basi s o f Axiom s 0,1,2,3.4 an d 5 , it i s possible to prove a very considerable portion o f the well known topological propositions of the plane. Nevertheles s there exist space s which satisfy thes e axioms. and therefore in which al l the numbered theorem s of thes e chapter s hol d true , bu t whic h ar e neithe r metric , locall y compac t nor separable an d i n which, moreover , i t i s not even tru e that i f P i s a poin t of a domai n D the n ther e exist s a domai n lyin g i n D, containin g P , an d bounded b y a simpl e close d curve . Chapter V is concerned particularly with upper semi-continuous collections . In Chapter VI there is formulated a set of axioms having the property tha t every compac t spac e that satisfie s al l o f them i s topologically equivalen t t o a sphere , whil e every noncompac t on e is topologically equivalen t t o a plane. In hi s paper Concerning B. L. Moore's Axiom 5 , F. Burto n Jone s showe d that i f Axiom 5 ' denotes the axio m obtaine d b y replacin g simple closed curvc by compact continuum i n the Statement o f Axiom 5 of the first editio n o f this book the n th e origina l Axio m 5 i s a consequenc e o f Axiom s 0- 4 an d 5' . This Axiom 5 ' i s the Axio m 5 of the present edition . Th e author consider s this improvement, du e to Jones, to b e a majo r one . N o Singl e axiom i n th e set thus revise d implie s the existenc e o f a simple close d curv e o r eve n o f a n are. In eac h o f a comparativel y smal l numbe r o f instances , th e nam e o f a mathematician ha s bee n writte n i n conjunetio n wit h a theorem. Ther e ar e vii vin PREFAC1 probably man y case s i n whic h i t coul d hav e bee n don e just a s appropriatel y as in the case s where it has bee n done . Th e author di d no t however car e t o assume the responsibility o f fixing the credit for more than a small proportio n of th e proposition s proved . Thu s th e fac t tha t n o nam e i s attache d t o a particular theore m an d tha t n o reference i s made i n connectio n wit h i t doe s not, b y an y means , necessaril y impl y tha t n o on e other tha n th e autho r ha s stated th e theore m i n questio n an d prove d i t b y a n argumen t tha t woul d apply, wit h littl e o r n o change , o n th e basi s o f th e axiom s employe d i n th e treatment give n here . O n th e othe r hand . th e fac t tha t th e nam e o f a mathematician i s give n i n connectio n wit h a theore m doe s no t necessaril y imply that th e proo f give n i n this boo k i s due to that mathematicia n o r eve n that an y argumen t tha t ha s bee n give n b y hi m woul d b e at al l sufficien t t o prove th e theore m i n questio n o n the basi s o f the axiom s her e employed .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    56 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us