Tantalum- and Ruthenium-Based Diffusion Barriers/Adhesion

Tantalum- and Ruthenium-Based Diffusion Barriers/Adhesion

TANTALUM- AND RUTHENIUM-BASED DIFFUSION BARRIERS/ADHESION PROMOTERS FOR COPPER/SILICON DIOXIDE AND COPPER/LOW κ INTEGRATION Xiaopeng Zhao, B.E., M.E. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS December 2004 APPROVED: Jeffry A. Kelber, Major Professor William E. Acree, Jr., Committee Member Mohammad Omary, Committee Member Angela Wilson, Committee Member Ruthanne D. Thomas, Chair of the Department of Chemistry Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies Zhao, Xiaopeng, Tantalum- and ruthenium-based diffusion barriers/adhesion promoters for copper/silicon dioxide and copper/low κ integration. Doctor of Philosophy (Analytical Chemistry), December 2004, 84 pp., 2 tables, 32 illustrations, 105 references. The TaSiO6 films, ~8Å thick, were formed by sputter deposition of Ta onto ultrathin SiO2 substrates at 300 K, followed by annealing to 600 K in 2 torr O2. X-ray photoelectron spectroscopy (XPS) measurements of the films yielded a Si(2p) binding energy at 102.1 eV and Ta(4f7/2) binding energy at 26.2 eV, indicative of Ta silicate formation. O(1s) spectra indicate that the film is substantially hydroxylated. Annealing the film to > 900 K in UHV resulted in silicate decomposition to SiO2 and Ta2O5. The Ta silicate film is stable in air at 300K. XPS data show that sputter-deposited Cu (300 K) displays conformal growth on Ta silicate surface (TaSiO6) but 3-D growth on the annealed and decomposed silicate surface. Initial Cu/silicate interaction involves Cu charge donation to Ta surface sites, with Cu(I) formation and Ta reduction. The results are similar to those previously reported for air-exposed TaSiN, and indicate that Si-modified Ta barriers should maintain Cu wettability under oxidizing conditions for Cu interconnect applications. XPS has been used to study the reaction of tert-butylimino tris(diethylamino) tantalum (TBTDET) with atomic hydrogen on SiO2 and organosilicate glass (OSG) substrates. The results on both substrates indicate that at 300K, TBTDET partially dissociates, forming Ta-O bonds with some precursor still attached. Subsequent bombardment with atomic hydrogen at 500K results in stoichiometric TaN formation, with a Ta(4f7/2) feature at binding energy 23.2 eV and N(1s) at 396.6 eV, leading to a TaN phase bonded to the substrate by Ta-O interactions. Subsequent depositions of the precursor on the reacted layer on SiO2 and OSG, followed by atomic hydrogen bombardment, result in increased TaN formation. These results indicate that TBTDET and atomic hydrogen may form the basis for a low temperature atomic layer deposition (ALD) process for the formation of ultraconformal TaNx or Ru/TaNx barriers. The interactions of sputter-deposited ruthenium with OSG at 300 K have been studied by XPS for Ru coverages from ~ 0.1 monolayer to several monolayers, using in-situ sample transfer between the deposition and analysis chambers. The results indicate Stranski-Krastanov (SK) type growth, with the completion of the first layer of Ru at an average thickness corresponding to 1 monolayer average coverage. Ru(0) is the only electronic state present. XPS core level spectra indicate weak chemical interactions between Ru and the substrate. A less pronounced tendency towards SK growth was observed for Ru deposition on parylene. Deposition of Ru on OSG followed by electroless deposition of Cu resulted in the formation of a shiny copper film that failed the Scotch® tape test. Results indicate failure mainly at the Ru/OSG interface. ACKNOWLEDGMENTS The author wishes to express his gratitude to Prof. Jeffry A. Kelber for his guidance and careful instruction. Special thanks are extended to Dr. William E. Acree, Jr., Dr. Mohammad Omary, Dr. Angela Wilson and Dr. Robert M. Wallace, for their informative discussions. Financial supports provided by the Semiconductor Research Corporation (SRC) through the Center for Advanced Interconnect Science and Technology (CAIST), SRC through a Novellus/SRC customized research program, and from the Robert Welch Foundation (grant no. B-1356), are gratefully acknowledged. Finally, the author would like to express sincere appreciation to his wife, Liqin Zhang for her constant encouragement and support. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ............................................................................................... ii LIST OF TABLES........................................................................................................... vi LIST OF ILLUSTRATIONS........................................................................................... vii LIST OF ABBREVIATIONS.......................................................................................... x CHAPTER 1. INTRODUCTION ........................................................................................... 1 1.1. RC Delay................................................................................................. 3 1.2. Copper Metallization for Interconnection Technology .......................... 4 1.3. Diffusion Barriers ................................................................................... 6 1.4. Thin Film Deposition ............................................................................. 8 1.4.1. Physical Vapor Deposition (PVD)-DC Magnetron Sputtering.. 8 1.4.2. Chemical Vapor Deposition (CVD) .......................................... 9 1.5. Low-κ Dielectric..................................................................................... 11 1.6. Nucleation Modes Characterized by XPS............................................... 14 1.7. Experimental Aspects. ........................................................................... 15 1.7.1. Apparatus ................................................................................... 15 1.7.2. X-Ray Photoelectron Spectroscopy (XPS) ................................ 16 1.8. Chapter References ................................................................................. 22 iii 2. COPPER INTERACTION WITH A TANTALUM SILICATE SURFACE: IMPLICATIONS FOR INTERCONNECT TECHNOLOGY ........................ 26 2.1. Introduction............................................................................................. 26 2.2. Experimental Details............................................................................... 28 2.3. Results..................................................................................................... 30 2.3.1. Ta Silicate Formation................................................................. 30 2.3.2. Thermal Decomposition............................................................. 34 2.3.3. Air-Exposure of Ta Silicate Film .............................................. 35 2.3.4. Cu/Film Interactions .................................................................. 35 2.4. Discussion............................................................................................... 42 2.5. Conclusions............................................................................................. 43 2.6. Chapter References ................................................................................. 44 3. CHEMICAL VAPOR DEPOSITION OF TANTALUM NITRIDE WITH TERTT-BUTYLIMINO TRIS(DIETHYLAMINO) TANTALUM AND ATOMIC HYDROGEN .................................................................................. 47 3.1. Introduction............................................................................................. 47 3.2. Experimental Details............................................................................... 49 3.3. Results..................................................................................................... 50 3.3.1. TaN Formation on SiO2 ............................................................ 50 3.3.2. TaN Formation on OSG............................................................. 56 3.4. Discussion............................................................................................... 62 iv 3.5. Conclusions............................................................................................. 64 3.6. Chapter References ................................................................................. 65 4. RETHENIUM SPUTTER DEPOSITION ON ORGANOSILICATE GLASS AND ON PARYLENE: AN XPS STUDY OF INTERFACIAL CHEMISTRY, NUCLEATION AND GROWTH ........................................ 68 4.1. Introduction............................................................................................. 68 4.2. Experimental Detail ................................................................................ 69 4.3. Results..................................................................................................... 69 4.4. Discussion............................................................................................... 74 4.5. Conclusions............................................................................................. 75 4.6. Chapter References ................................................................................. 76 BIBLIOGRAPHY............................................................................................................ 78 v LIST OF TABLES Table Page 1.1. Properties of possible interconnect metals.............................................................. 5 1.2. Requirements for low dielectric constant intralayer-dielectric materials ...............13 vi LIST OF ILLUSTRATIONS Figure Page 1.1. Comparison of intrinsic gate delay and interconnect

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    97 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us