Interpolation

Interpolation

MATH 350: Introduction to Computational Mathematics Chapter III: Interpolation Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2008 [email protected] MATH 350 – Chapter 3 Spring 2008 Outline 1 Motivation and Applications 2 Polynomial Interpolation 3 Piecewise Polynomial Interpolation 4 Spline Interpolation 5 Interpolation in Higher Space Dimensions [email protected] MATH 350 – Chapter 3 Spring 2008 Motivation and Applications Outline 1 Motivation and Applications 2 Polynomial Interpolation 3 Piecewise Polynomial Interpolation 4 Spline Interpolation 5 Interpolation in Higher Space Dimensions [email protected] MATH 350 – Chapter 3 Spring 2008 Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. We can fit the data exactly ! interpolation or curve fitting, or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression The data can be univariate: measurements of physical phenomenon over time multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). [email protected] MATH 350 – Chapter 3 Spring 2008 We can fit the data exactly ! interpolation or curve fitting, or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression The data can be univariate: measurements of physical phenomenon over time multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. [email protected] MATH 350 – Chapter 3 Spring 2008 or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression The data can be univariate: measurements of physical phenomenon over time multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. We can fit the data exactly ! interpolation or curve fitting, [email protected] MATH 350 – Chapter 3 Spring 2008 or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression The data can be univariate: measurements of physical phenomenon over time multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. We can fit the data exactly ! interpolation or curve fitting, [email protected] MATH 350 – Chapter 3 Spring 2008 or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression The data can be univariate: measurements of physical phenomenon over time multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. We can fit the data exactly ! interpolation or curve fitting, [email protected] MATH 350 – Chapter 3 Spring 2008 The data can be univariate: measurements of physical phenomenon over time multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. We can fit the data exactly ! interpolation or curve fitting, or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression [email protected] MATH 350 – Chapter 3 Spring 2008 The data can be univariate: measurements of physical phenomenon over time multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. We can fit the data exactly ! interpolation or curve fitting, or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression [email protected] MATH 350 – Chapter 3 Spring 2008 The data can be univariate: measurements of physical phenomenon over time multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. We can fit the data exactly ! interpolation or curve fitting, or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression [email protected] MATH 350 – Chapter 3 Spring 2008 multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. We can fit the data exactly ! interpolation or curve fitting, or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression The data can be univariate: measurements of physical phenomenon over time [email protected] MATH 350 – Chapter 3 Spring 2008 We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. We can fit the data exactly ! interpolation or curve fitting, or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression The data can be univariate: measurements of physical phenomenon over time multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain [email protected] MATH 350 – Chapter 3 Spring 2008 We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements). Alternatively, we may want to represent a complicated function (that we know only at a few points) by a simpler one. This could come up in the evaluation of integrals with complicated integrands, or the solution of differential equations. We can fit the data exactly ! interpolation or curve fitting, or only approximately (e.g., when the data is noisy) ! (least squares) approximation or regression The data can be univariate: measurements of physical phenomenon over time multivariate: measurements of physical phenomenon over a 2D or 3D spatial domain [email protected] MATH 350 – Chapter 3 Spring 2008 We will concentrate on interpolation of univariate data. Motivation and Applications A problem that arises in almost all fields of science and engineering is to closely fit a given set of data (obtained, e.g., from experiments or measurements).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    175 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us