Turbulence Modelling

Turbulence Modelling

Turbulence Modelling B. Dubrulle CNRS SPEC, CEA Saclay Astrophysical Flows Disks/Galaxies Re ≈1013 Planetary Atmosphere 9 Re =10 8 Stars Re =10 Navier-Stokes Equations: ∂tu + u • ∇ u = − ∇ p + ν Δ u + f LU Control Parameter: Re = ν 2 Re =10 11 Re =107 Re =10 Re =1012 Re =1021 Laboratory Flows Grid Turbulence Taylor-Couette Von Karman 5 3 Re =10 6 Re =10 Re =10 Similarity Principle:same boundray conditions, same Reynolds->same behaviour Joule’s experiment (1840) Application of 772.24 foot pound force (4.1550 J.cal−1) results in elevation of temperature of a pound of water by one degree Fahrenheit Fluid good converters of Mechanical enery into heat Aside about Joule’s experiment NEQFLUIDS2016: Classical and Quantum Fluids Out of Equilibrium 13-16 Jul 2016 Grand Hotel de Paris, Villard de Lans (France) Robert&Collins Lessiveuse: n.m. Traduction: washing machine Ils utilisent le club de cartes comme leur lessiveuse. ->They use the card club as their washing machine. Aside about Joule’s experiment 1840 1991 Robert&Collins Von Karman Flow: n.m. Traduction: french washing machine They use their french washing machine as experimental set up-> Ils utilisent leur lessiveuse comme experience. Douady S, Couder Y and Brachet M E 1991 Direct observation of the intermittency of intense vorticity filaments in turbulence Phys. Rev. Lett. 67 983 A modern version: VK flow Work measured by Torques applied at Shafts Heat flux measured By keeping T constant Rousset et al, RSI 85, 103908 (2014); Zeroth law of turbulence SuperFluid! Non-dimensional Energy dissipation per unit mass is independent of viscosity!!!!! Ravelet PhD, Saint-Michel PhD, VKS collaboration, SHREK collaboration Observation: power-law spectrum Energy cascade Saclay team: Debue, Kuzzay, Faranda, Saw, Daviaud, Dubrulle et al, (2016) Observation of Fluid Movements Creation of structures finer and finer till dissipation by viscosity-> scale hierachy Scale hierarchy Scale hierarchy Leonard de Vinci Richardson’s Cascade (Jonathan Swift) Big whirls have litle whirls, Which feed on teir velocit, And litle whirls have lesser whirls , And so on t viscosit.” Lewis Fry Richardson 1881-1953 Kolmogorov Cascade (1941) Big whirls have litle whirls, Which feed on teir velocit, And litle whirls have lesser whirls , And so on t viscosit.” Lewis Fry Richardson Andrey Kolmogorov 1903-1987 Kolmogorov Theory (1) NSE+homogeneity 1 2 1 3 2 ∂t (δuℓ ) +ε = − ∇ℓ (δuℓ ) +νΔℓ (δuℓ ) 2 4 δuℓ = u(x + ℓ) − u(x) Karman Howarth equation Kolmogorov Theory (2) KH equation + self-similarity+stationarity 1 2 1 3 2 ∂t (δuℓ ) +ε = − ∇ℓ (δuℓ ) +νΔℓ (δuℓ ) 2 4 3 4 (δuℓ ) ∝− εℓ 3 2/3 −5/3 2 2/3 E k = C ε k (δuℓ ) ∝(εℓ) ( ) Interpretation:The energy cascade Work Energy cascade Heat Dissipative scale Injection scale (viscosity) Turbulence phenomenology Robust result Kolmogorov spectrum Constant energy transfer du 2 u3 = ε ≅ = cte Interpretation (Kolmogorov 1941) dt l Energy cascade 1 3 L ⇒ u ∝ (εl) N l Degrees of freedom 3 ⎛ L⎞ 9 N = ⎜ ⎟ ∝ Re 4 ⎝ η⎠ 1 ν3 4 η = ( ε ) The scales of turbulence η L Example: the sun Dissipation Solar Giant Granule scale spot Convective cell 0.1 km 103 km 3⋅104 km 2⋅105 km 3 N = (10 6 ) = 1018 Many degrees of freedom! Scale of turbulence L=5cm η=1mm L=10m η=0.06mm L=6000 km η=6mm Simulation of turbulence We have the basic equations… Can we simulate all these systeme? → → → ∇• u = 0 → → → → 1 → → ∂ u+ (u•∇)u = − ∇ p +νΔ u t ρ Computer Blue Gene Simulation of turbulence Simulation: 6 109 nodes --> 1 week of CPU on Blue Gene Storage: 108 nodes- -> 2Tb= 1 disk Simulation of turbulence 3 ! L $ N = # & "η % L=5cm η=1mm N=105 L=10m 16 η=0.06mm N=10 L=6000 27 km N=10 η=6mm Simulation of turbulence L=5cm η=1mm 1 mn of cpu Less than a disk L=10m 16 η=0.06mm N=10 L=6000 27 km N=10 η=6mm Simulation of turbulence L=5cm η=1mm 1 mn of cpu Lett than a disk L=10m 20 000 years of cpu η=0.06mm 100 billions disks L=6000 27 km N=10 η=6mm Simulation of turbulence L=5cm η=1mm 1 mn of cpu Less than a disk L=10m 20 000 years of cpu η=0.06mm 100 billions disks L=6000 1015 years of cpu km 1019 disks η=6mm Simulation of turbulence L=5cm η=1mm 1 mn of cpu Less than a disk L=10m 20 000 years of cpu η=0.06mm 100 billions disks L=6000 1015 years of cpu km 1019 disks η=6mm What can be done? Explosion Flux d’Energie E(k) (Viscosité Turbulente) Grandes Echelles Petites Echelles (Paramétrisées) 90 % des ressources k informatiques Building on Kolmogorov 1 2 1 3 2 ∂t (δuℓ ) +ε = − ∇ℓ (δuℓ ) +νΔℓ (δuℓ ) 2 4 Energy injection Viscous Energy transfer dissipation 1 2 2 2 ∂t (δuℓ ) +ε = ∇ℓ (νT ∇ℓ (δuℓ ) )+νΔℓ (δuℓ ) 2 Turbulent Viscosity What can be done? Explosion Flux d’Energie E(k) (Viscosité Turbulente) Grandes Echelles Petites Echelles (Paramétrisées) 90 % des ressources k informatiques Two ways to cut the scale space Fluctuations RANS: You keep the mean Mean Flow Flow Parametrize fluctuations Small scales LES: You keep the large scale Parametrize the small Large scale Mathematical translation 1 ∂ u + u ∇ u = − ∇ p + Δ u + f t i j j i i Re i i _ u = u + u' Spatial filter for LES _ Ensemble average for RANS 1 ∂ u + u ∇ u = − ∇ p + Δ u + f − ∇ τ t i j j i i Re i i j ij Reynolds stress τij = ui uj − ui u j + ui u' j + u' i u j +u' i u' j LES τij = +u' i u' j RANS Influence of decimated scales l 2 Typical time at scale l: δt ≈ ∝ l 3 u Decimated scales (small scales) vary very rapidly We may replace them by a noise with short time scale u = u + u' Dtu' i = Aiju' j +ξj ξi (x,t )ξ j (x' ,t' ) =κ ij (x, x')δ(t − t' ) Generalized Langevin equation Obukhov Model Simplest case No mean flow u = 0 Large isotropic friction A = −γδ , γ >>δt ij ij No spatial correlations κ ij(x,x') ∝γδij ! ! ! ! ⎛ 3 ⎞ ⎛ 3x2 3x •u u2 ⎞ P(x,u,t) = ⎜ 2 ⎟exp⎜− 3 − 2 − ⎟ ⎝ 2πεt ⎠ ⎝ εt εt εt ⎠ u ∝ εt Gaussian velocities x ∝ ε 2 / 3t 3/ 2 Richardson’s law u ∝ x1/ 3 Kolmogorov’s spectra LES: Langevin Influence of decimated scales: transport !• ! ! x = u + u' Leprovost&Dubrulle ! ! ! Ω = ∇ × u !• ! ! ! ! ! ! Ω = (Ω•∇)u + (Ω•∇)u' ' ' βkl = ukul Stochastic computation ' ' αijk = ui∂ ku j ∂t Ωi + uk ∇k Ωi = Ωk∇k ui + ∇ k[βkl ∇l Ωi ] + 2α kil ∇kΩl Turbulent viscosity AKA effect Parametrization: RANS Issue: Reynolds stress parametrization τij = +u' i u' j = −αijk uk − βijkl∇k ul AKA effect Turbulent Viscosity Helicity effect 4 order tensor Influence on mean flow (breaks Galilean invariance) Can be « negative » (instabilities) Produces large scale-instabilities (cf dynamo effect) Sulem, Frisch, She Dubrulle&Frisch RANS Parametrization: RANS$ AKA effect Use to explain: Solar Granulation (Kishan, MNRAS, 1991) Galaxy Clustering (Kishan, MNRAS, 1993) Large-scale vortices in disks (Kitchatinov et al, A&A, 1994) Liitle (not?) used in general turbulence No general theory ! ! Analogy with dynamo: 1 u'•(∇ × u') α = ε ijk 3 τ ijk 3D isotropic RANS: AKA Parametrization: RANS$ Viscosity Not necessarily isotrop(cf shear flows) (Dubrulle&Frisch, Isotropic Case βijkl = νT δ jk δil Characteristic lenght Dimensional analysis νT = KV L Characteristic Constant velocity 1 Kolmogorov theory V = (εL) 3 4 1/3 3 νT = Kε L RANS: Viscosity Example 1: Mixing length Convection ! ! "!! 1 !!!" ! ! Fc ∂tu + u •∇u = − ∇p + βθ g +νT Δu Core ρ dr Radiative H Hp p = − Inertia = Buyancy d ln p Vc 2 vc 1 ≈ βgθ 3 L vc = (gβFcL) Fc = vcθ 1 4 3 3 νT = (gβFc) L L = α Hp 1 < α < 2 RANS: Viscosity Example 2: Smagorinski Viscosity written function of mean gradients 2 νT = (csΔ) ∇ j ui∇ j ui Mesh size Adjustable Constant RANS: Viscosity Example 3: RNG Viscosity in spectral space ˆ 2 νT Δu i → −ν T k uˆ i 1 ⎛ ε ⎞ 3 νˆ = K⎜ ⎟ T ⎝ k4 ⎠ Computed with renormalization group RANS: Viscosity Multi-scale computation L l l ε = <<1 L Main idea: use scale separation Method: a) Linearization equations b) development of operators and fields in power of ε c) Solve order by order d) Solvability conditions provide coefficient Example: Turbulent diffusivity Frisch in « Lecture notes on turbulence » World Scientific, 1989 Before we start… Is there a solution to ? Ax = y Solvability condition: y ∈Im(A) ⇔ ∀z ∈Ker(A+ ), y • z = 0 In space of periodical functions f •g = ∫ f (x,t)g(x,t)dxdt Ker(A+ ) = 1: x → 1 Solvability condition 1• y = y = ∫ y(x)dx =0 RANS: multi Turbulent diffusion (1) Basic equation: passive scalar ! 2 x ∂ Θ+ u •∇ Θ = κ∇ Θ Fast variables: T x x t ! ! u = 0 Slow variables X = εx T = ε 2t expansion ∇x ← ∇x + ε∇X 2 ∂t ← ∂t + ε ∂ T Θ(x, X,t,T) = Θ(0) + εΘ(1) + ε2Θ(2) + ... Frisch in « Lecture notes on turbulence » World Scientific, 1989 Turbulent diffusion (2) Order 0 (0) ! (0) 2 (0) Equation ∂tΘ + u∇xΘ = κ∇xΘ Solvability 0=0 (0) (0) (0) Solution Θ (x,t, X,T) = Θ (X,T) = Θ Order 1 Equation (1) ! (1) ! (0) 2 (1) ∂tΘ + u∇xΘ = −u∇X Θ +κ∇xΘ ! ! Solvability u = 0 (1) ! (0) Θ = χ∇X Θ Solution ! ! ! ! 2 ! Frisch in « Lecture notes on turbulence » World Scientific, 1989 ∂t χ + u∇x χ = −u +κ∇x χ Turbulent diffusion (3) Order 2 (2) ! (2) (0) Equation ∂tΘ + u∇xΘ +∂T Θ = ! (1) 2 (2) 2 (0) −u∇XΘ +κ∇xΘ +κ∇X Θ (1) +2κ∇x∇XΘ (0) 2 (0) Solvability ∂ Θ = κ∇ + D ∂ ∂ Θ T ( X ij Xi X j ) 1 ⎡ ⎤ Dij = − ⎣ ui χ j + uj χi ⎦ Turbulent Diffusivity 2 = κ ∂l χi∂i χl > 0 Frisch in « Lecture notes on turbulence » World Scientific, 1989 Two ways to cut the scale space Fluctuations RANS: You keep the mean Mean Flow Flow Parametrize fluctuations Small scales LES: You keep the large scale Parametrize the small Large scale Mathematical translation 1 ∂ u + u ∇ u = − ∇ p + Δ u + f t i j j i i Re i i _ u = u + u' Spatial filter for LES _ Ensemble average for RANS 1 ∂ u + u ∇ u = − ∇ p + Δ u + f − ∇ τ t i j j i i Re i i j ij Reynolds stress τij = ui uj − ui u j + ui u' j + u' i u j +u'

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    62 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us