1997 Citation

1997 Citation

1997 Citation: 1 1. ARC $350, 000 S Symmetries of finite digraphs 2014 − 2016 ARC $300, 000 Cayley graphs and associated geometries 2012 − 2014 Efficient computation in finite groups with applications in ARC $825, 728 2010 − 2014 algebra and graph theory Finite permutation groups and flag-transitive incidence ARC $999, 354 2007 − 2011 structures ARC QEII $589, 275 Symmetrical graphs, generalized polygons and expanders 2003 − 2007 ARC $300, 000 Factorisation of finite groups and graphs 2004 − 2206 ARC $165, 000 Finite almost transitive groups and graphs 2001 − 2003 APD $177, 009 Finite s-arc-transitive graphs and regular maps 2000 − 2002 UWA $150, 000 Finite vertex-transitive graphs and Cayley graphs 1997 − 2000 2 Selected Plenary and Invited Talks I have given a number of keynote/invited talks at international conferences in Europe, North America, Asia or Australia most years since 1998, including • Amalgams for Graphs and Geometries (Oberwolfach, May 2004). • Group Theory and Algebraic Combinatorics (Beijing, June 2004) • Third Pacific Rim Conference on Mathematics (Shanghai, Aug 2005), • Second Annual Conference on Computation and Logic (Kunming, May 2005), • Lie Theory, Lattices and Dynamics (Newcastle, Nov 2005), • Applications of Group Theory to Combinatorics (Pohang Korea, July 2007), • Permutation Groups (Oberwolfach, Aug 2007), (invited, but couldn’t go). • Fourth Pacific Rim Conference on Mathematics (Hong Kong, Dec. 2007). • Algebraic Combinatorics and Group Theory (Beijing, June 2008). • Vertex Transitive Graphs (Banff, Dec. 2008). • Group Theory, Combinatorics and Computation (Perth, Jan 2009). • Discrete Mathematics – Tomo is Sixty (Ljubljana Slovenia, June 2009). • Graph Embeddings and Maps on Surfaces (Slovakia, July 2009). • Symmetries of Graphs and Networks (Slovenia, August 2010). • A Symposium on Mathematics and Applications (Yunnan Math. Soc. Sep 2010). • Group Actions on Combin. Structures – Beijing International Workshop (2011.8). • An International Symposium on Logic, Computation and Combinatorics (Sep 2012, Kunming China). • The Seventh Conference on Graphs and Combinatorics (Changsha, 2013.6). • The Third International Symposium on Groups, Algebras and related topics, (Beijing, June 2013). • The 13th Natinal Conference on Algebra of China (Aug 2013, Changchun China). • The 2nd International Conference on Group, Graph and Network (2013, Beijing). • The 5th International Symposium on Graph Theory and Combinatorial Algorithms (Inner Mongolia, July 2013). • Second International Conference on Group Actions and Transitive Graphs (Kunming China, Sep 2013). • Symmetries of Graphs and Networks IV, (Slovenia, 2014, invited but couldn’t go). • SIGMAP 2014 Workshop Symmetry In Graphs, Maps And Polytopes (West Malvern, U.K., July 2014, invited, but couldn’t go). • International conference on Groups and Algebras (Beijing June 2014). • International Conference on Combinatorics and Graphs, A Satellite Conference of ICM 2014 (Beijing, Aug 2014, invited but couldn’t go). • Asymptotic group theory, Budapest, Hungary, (2015.8, invited but couldn’t go). • Workshop on Algebraic Combinatorics, Hangzhou, China, Sep 18-23, 2015, • Groups and transitive graphs, Nanning, November 2015 • Symmetric graphs, and Networks, Tianjin, December 2016. • Cheryl Praeger Retirement Mini-symposium, Perth, April 13, 2017. 3 Book chapters (1) C. H. Li, Cayley Graphs, (written by invitation), Kluwer Encyclopedia of Mathematics (Supplement III),2002,(Managing Editor: M. Hazewinkel, Kluwer Academic Publishers). (2) C. H. Li, A. Seress, Constructions of quasiprimitive two-arc transitive graphs of product action type, Finite geometries, groups, and computation, 115-123, Walter de Gruyter GmbH & Co. KG, Berlin, 2006. (3) M. Giudici, C. H. Li, and C. E. Praeger, Symmetrical covers, decompositions and factorisations of graphs, in Applications to Group Theory and Combinatorics. Eds: J. Koolen, J.H. Kwak and M.Y. Xu. A. A. Balkema Publishers (Taylor & Francis), pp27-42 (2008). Journal papers 1994-1996 (4) C. H. Li, Finite groups in which every pair of elements of the same order is either conjugate or inverse-conjugate, Comm. Algebra, 22 (1994), 2807-2816. (5) C. H. Li, Isomorphisms and classification of Cayley graphs of small valencies on finite abelian groups, Australas. J. Combin. 12 (1995), 3-14. (6) C. H. Li, The finite groups with the 2-DCI property, Comm. Algebra, 24 (1996), 1749-1757. (7) C. H. Li and C. E. Praeger, The finite simple groups with at most two fusion classes of every order, Comm. Algebra, 24 (1996), 3681-3704. 1997 (8) C. H. Li, The primitive permutation groups of certain degrees, J. Pure Appl. Algebra, 115 (1997), 275-287. (9) C. H. Li, Isomorphisms of finite Cayley graphs, Bull. Aust. Math. Soc. 56 (1997), 169-172. (10) C. H. Li, The cyclic groups with the Cayley isomorphism property, European J. Combin. 18 (1997), 655-665. (11) C. H. Li, On finite groups with the Cayley invariant property, Bull. Austral. Math. Soc. 56 (1997), 253-261. (12) C. H. Li, C. E. Praeger, On finite groups in which any two elements of the same order are fused or inverse-fused, Comm. Algebra 25 (1997), 3081-3118. 1 2 (13) C. H. Li, On self-complementary vertex-transitive graphs, Comm. Algebra 25 (1997), 3903-3908. 1998 (14) C. H. Li, On isomorphisms of connected Cayley graphs, Discrete Math. 178 (1998), 109-122. (15) C. H. Li, Isomorphisms of connected Cayley digraphs, Graphs and Combin. 14 (1998), 37-44. (16) C. H. Li, Isomorphisms of Cayley digraphs of abelian groups, Bull. Austral. Math. Soc. 57 (1998), 181-188. (17) X. G. Fang, C. H. Li, C. E. Praeger, On orbital regular graphs and Frobenius graphs, Discrete Math. 182 (1998), 85-99. (18) C. H. Li, The solution of a question of Godsil regarding cubic Cayley graphs, J. Combin. Theory Ser. B 72 (1998), 140-142. (19) C. H. Li, C. E. Praeger, M. Y. Xu, Finite groups with the Cayley isomorphism property, J. Graph Theory 27 (1998), 21-31. (20) Z. Y. Gu, C. H. Li, The Cayley graphs of order a prime-square which are Cayley invariant, Australas. J. Combin. 17 (1998), 169-174. (21) C. H. Li, AnonabelianCI-group, Australas. J. Combin. 17 (1998), 229-233. (22) C. H. Li, Afamilyofquasiprimitive2-arctransitivegraphs which have non-quasiprimitive full automorphism groups, European J. Combin. 19 (1998), 499-502. (23) C. H. Li, On finite graphs that are self-complementary and vertex-transitive, Australas. J. Combin. 18 (1998), 147-155. (24) C. H. Li, C. E. Praeger, M. Y. Xu, On isomorphisms of finite Cayley digraphs of bounded valency, J. Combin. Theory Ser. B 73 (1998), 164-183. (25) C. H. Li, On Cayley graphs of abelian groups, J. Algebraic Combin. 8 (1998), 205-215. (26) C. H. Li, On isomorphisms of connected Cayley graphs II, J. Combin. Theory Ser. B 74 (1998), 28-34. (27) C. H. Li, On isomorphisms of connected Cayley graphs III, Bull. Austral. Math. Soc. 58 (1998), 137-145. (28) M. Conder, C. H. Li, On isomorphisms of finite Cayley graphs, European J. Combin. 19 (1998), 911-919. 1999 3 (29) C. H. Li, Jie Wang, Finite groups acting 2-transitively on their Sylow sub- groups, Acta Math. Sinica 41 (1998), 931-942; (English Series) 15 (1999), 131-144. (30) C. H. Li, Abelian groups with the Cayley isomorphism property, Ars Combin. 51 (1999), 77-88. (31) C. H. Li, C. E. Praeger, On the isomorphism problem of finite Cayley graphs of bounded valency, European J. Combin. 20 (1999), 279-292. (32) C. H. Li, Finite CI-groups are solvable, Bull. London Math. Soc. 31 (1999), 419-423. (33) C. H. Li, On isomorphisms of finite Cayley digraphs of bounded valency II, J. Combin. Theory Ser. A 87 (1999), 333-346. (34) C. H. Li, On finite groups with the Cayley isomorphism property II, J. Combin. Theory Ser. A 88 (1999), 19-35. (35) C. H. Li, Acompleteclassificationoffinitehomogeneousgroups, Bull. Austral. Math. Soc. 60 (1999), 331-334. 2000 (36) M. Conder, C. H. Li, C. E. Praeger, On the Weiss conjecture for finite locally-primitive graphs, Proc. Edinburgh Math. Soc. 43 (2000), 129-138. (37) C. H. Li, C. E. Praeger, S. M. Zhou, Aclassofsymmetricgraphswith2-arctransitivequotients, Math. Proc. Cambridge Phil. Soc. 129 (2000), 19-34. (38) C. H. Li, H. S. Sim, The graphical regular representations of metacyclic p- groups, European J. Combin. 21 (2000), 917-925. 2001 (39) C. H. Li, H. S. Sim, On half-transitive metacirculant graphs of prime-power order, J. Combin. Theory Ser. B 81 (2001), 45-57. (40) C. H. Li, On finite s-arc transitive graphs of odd order, J. Combin. Theory Ser. B 81 (2001), 307-317. (41) C. H. Li, Finite s-arc transitive graphs of prime-power order, Bull. London Math. Soc. 33 (2001), 129-137. (42) C. H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs with s > 4, Trans. Amer. Math. Soc. 353 (2001), 3511-3529. (43) C. H. Li, S. M. Zhou, Isomorphisms for minimal Cayley graphs, Graphs and Combin. 17 (2001), 307-314. 4 (44) C. H. Li, H. S. Sim, Automorphisms of metacyclic Cayley graphs of prime-power order, J. Aust. Math. Soc. 71 (2001), 223-233. (45) R. Jajacy, C. H. Li, Constructions of self-complementary circulants with no multiplicative isomorphisms, European J. Combin. 22 (2001), 1093-1100. (46) C. H. Li, D. Marusic, J. Morris, Classifying arc-transitive circulants of square-free order, J. Algebraic Combin. 14 (2001), 145-151. (47) C. H. Li, C. E. Praeger, Self-complementary vertex-transitive graphs need not be Cayley graphs, Bull. London Math. Soc. 33 (2001), no. 6, 653-661. 2002 (48) X. G. Fang, C. H. Li, J. Wang, M. Y. Xu, On cubic normal Cayley graphs of finite simple groups, Discrete Math. 244 (2002), 67-75. (49) C. H. Li, C. E. Praeger, A. Venkatesh, S. M. Zhou, Finite locally-quasiprimitive graphs, Discrete Math. 246 (2002), 197-218. (50) C. H. Li, On Isomorphisms of finite Cayley graphs – a survey, Discrete Math.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us