Lecture 8: Spinors & Dirac Equation

Lecture 8: Spinors & Dirac Equation

QFT Dr Tasos Avgoustidis (Notes based on Dr A. Moss’ lectures) Lecture 8: Spinors & Dirac Equation !1 QFT Lorentz Group (Recap) µ µ µ • Consider transformation ⇤ ⌫ = δ ⌫ + ✏w ⌫ µ ⌧ ⌫ µ⌫ • Using definition of LT ⇤ σ⌘ ⇤ ⌧ = ⌘ • For terms linear in ✏ then wµ⌫ + w⌫µ =0 • For infinitesimal LT the matrix needs to be anti- symmetric. This has 6 degrees of freedom, corresponding to the 6 transformations of the Lorentz group • Introduce basis of 6 anti-symmetric 4x4 matrices ( ⇢)µ⌫ = ⌘⇢µ⌘⌫ ⌘σµ⌘⇢⌫ M − • ⇢ , σ label which matrix, µ, ⌫ the row/column of each matrix !2 Lecture equations Adam Moss (Dated: February 28, 2012) 1 d3xd3kd3q Hˆ = × (1) 8 (2π)6E(k)E(q) ! LectureE equations(k)E(q) −(ˆa†(k)eik·x − aˆ(k)e−ik·x)(ˆa†(q)eiq·x − aˆ(q)e−iq·x) (2) † ik·x −ik·x † iq·x −iq·x (−ik aˆ (k")e + ik aˆ(k)e )(−iq aˆ (q)e + iq aˆ(q)e #) (3) Adam2 Moss† ik·x −ik·x † iq·x −iq·x (Dated: February"m (ˆa 28,(k 2012))e +ˆa(k)e )(ˆa (q)e +ˆa(q)e ) # (4) " # 1 d3k Hˆ = × (5) 1 d3xd3kd3q 3 2 Hˆ × 8 (2π) E(k) = 6 ! (1) 8 (2π) E(k)E(q) k k ! (−E(k)2 + k2 + m2)(ˆa†(k)ˆa†(−k)e2iE( )t +ˆa(k)ˆa(−k)e−2iE( )t) (6) E(k)E(q) −(ˆa†(k)eik·x − aˆ(k)e−ik·x)(ˆa†(q)eiq·x − aˆ(q)e−iq·x) (2) 2 2 2 † † † ik·x −$(ikE·x(k) + k† + miq·x)(ˆa (k)ˆa(k)+ˆ−iq·xa(k)ˆa (k)) % (7) (−ik aˆ (k")e + ik aˆ(k)e )(−iq aˆ (q)e + iq aˆ(q)e #) (3) 2 † ik·x −ik·x † iq·x −iq·x "m (ˆa (k)e +ˆa(k)e ")(ˆa (q)e +ˆa(q)e ) # # (4) " # 1 d3k Hˆ = (ˆa†(k)ˆa(k)+ˆa(k)ˆa†(k)) (8) π 3 1 d3k 4 (2 ) Hˆ = × ! (5) 8 (2π)3E(k)2 ! k k (−E(k)2 + k2 + m2)(ˆa†(k)ˆa†(−k)e2iE( )t +ˆa(k)ˆa(−k)e−2iE( )t) (6) φˆ(x)φˆ(y), if x0 >y0 T φˆ(x)φˆ(y)= (9) $ 2 2 2 † † ˆ ˆ % 0 0 2 (E(k) + k + m )(ˆa (k)ˆa(k)+ˆa(k)ˆa (k)) &φ(y)φ(x), if y >x (7) " # T [φ φ 1φ φ ]=:d3k φ φ φ φ :+ (10) Hˆ 1= 2 3 4 (ˆa1†(k2)ˆa3(k4)+ˆa(k)ˆa†(k)) (8) 0001 4 (2π)3 − − − ! ∆F (x1 x2):φ3φ4 :+∆F (x1 x3):φ2φ4 :+∆F (x1 x4):φ2φ3 :+ (11) ⎛ 0000⎞ ∆F (x2 − x3):φ1φ4 :+∆F (x2 − x4):φ1φ3 :+∆F (x3M−03x4):µ φ1φ2 :+ (12) QFT ( ) ν = (16) − − Lorentz− Group− −⎜ ⎟− ∆F (x1 x2)∆F (x3 x4)+∆F (x1 x3)∆F (x2 x4)+∆F (x1 ⎜x00004)∆F (x2 ⎟x3)(13) φˆ(x)φˆ(y), if x0 >y0 ⎜ ⎟ T φˆ(x)φˆ(y)= (9) ⎜ ⎟ φˆ(y)φˆ(x), if y0 >x0 ⎜ 1000⎟ & ⎜ ⎟ 2 ⎝ ⎠ ⇢0100µ ⇢µ σ σµ ⇢ T [φ1φ2φ3φ4]=:φ1φ2φ3φ4 :+ (10) 00 0 0 • Lower one index ( ⎛ 1000) ⌫ =⎞ ⌘ δ ⌫ ⌘ δ ⌫ ∆ (x − x ):φ φ :+∆ (x − x ):φ φ :+∆ (Mx 01− xµ ):φ φ 0001:+ (11) F 1 2 3 4 F 1 3 2 4 F( 1 ) 4Mν = 2 3 −⎛ 00−10⎞ (14) ⎜ ⎟ M12 µ ∆F (x2 − x3):φ1φ4 :+∆F (x2 − x4):φ1φ3 :+∆F (x3 − x4):φ⎜1⎛φ00002 :+⎟⎞ ( ) (12)ν = (17) ⎜ 0000⎟ ⎜ ⎟ − • −Matrices− are now− (M 03no-longer)µ =⎜− antisymmetric⎟− ⎜ 01 on 0 0 µ,⎟ ⌫ (16) 2 ∆F (x1 x2)∆F (x3 x4)+∆F (x1 x3)∆F (x2 x4)+∆νF (x⎜1⎜0000x4)∆F (x⎟2⎟ x3)(13)⎜ ⎟ ⎜⎜ 0000⎟⎟ ⎜ ⎟ ⎝⎜ ⎠⎟ ⎜ 00 0 0⎟ • Infinitesimal boosts: ⎜ ⎟ ⎜ ⎟ ⎜ 1000⎟ ⎜ ⎟ 2 ⎝ ⎠ ⎝ ⎠ 0100 0010 0001 000 0 ⎛ 1000⎞ ⎛ 000000 0 0⎞ ⎛ 0000⎞ M01 µ M02 µ M03 µ ( ) ν = 0001 ( ) ν = ( ) ν(14)= ⎛ 000−1 ⎞ (15) (16) ⎜ 0000⎟ ⎜⎛ 001000−10⎟⎞ (M13)µ =⎜ 0000⎟ (18) ⎜⎛ ⎞⎟ M12 µ ⎜ ⎟ ν ⎜ ⎟ ⎜ 0000⎟ ( ) ν = ⎜ ⎟ ⎜⎜ 000⎟ 0⎟ (17) (M03)µ = ⎜ ⎟ ⎜ ⎟⎟ (16) ⎜⎜ ⎟ ⎟ ν ⎜⎜ 0000⎟ ⎜ 010000 0 0⎟⎟ ⎜⎜1000⎟ ⎟ ⎜⎜ 0000⎟ ⎜ ⎟⎟ ⎜⎜ ⎟ ⎟ ⎝⎜ ⎟⎠ ⎝⎜ ⎠⎟ ⎜ 010 0⎟ ⎜ ⎟ ⎜ 00 0 0⎟ ⎝⎜ ⎠ ⎟ ⎜ 1000⎟ ⎜ ⎟ ⎝ ⎠ ⎜ ⎟ ⎝ ⎠ • Infinitesimal⎝ ⎠rotations: 0010 00 0 0 000 0 ⎛ 0000⎞ 000 0 M02 µ 00 0 0 ⎛ 00−10⎞ ( ) ν = M12 µ (15) ⎛ ⎞ ⎜ ⎟ ⎛ 000−1 ⎞( ) ν = 000 0 (17) ⎛⎜ 1000− ⎟⎞ 13 µ M23 µ ⎜ ⎟ 12 µ 00 10 M ( ) = 01 0 0 (19) (M ) = ⎜ ⎟ ( ) ν = (17)ν ⎜ ⎜ ⎟ ⎟ (18) ν ⎜⎜ ⎟⎟ ⎜ 000 0⎟ ⎜ ⎜ 000−⎟1 ⎟ ⎜⎜010000 0 0⎟⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟⎟ ⎜ ⎟ ⎜ ⎜00 0 0⎟ ⎟ ⎜⎝ ⎠⎟ ⎜ ⎟ ⎜ ⎜ ⎟ ⎟ ⎜ 00 0 0⎟ ⎜ 010 0⎟ ⎜ 001 0⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎜ ⎠ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ !3 000 0 000 0 000 0 ⎛ 000−1 ⎞ ⎛ 000−1 ⎞ ⎛ 000 0⎞ M13 µ (M13)µ = (M23)µ = ( ) (18)ν = (19) (18) ν ⎜ ⎟ ν ⎜ ⎟ ⎜ 000 0⎟ ⎜ 000 0⎟ ⎜ 000−1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 010 0⎟ ⎜ 001 0⎟ ⎜ 010 0⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 000 0 000 0 ⎛ ⎞ 23 µ 000 0 ⎛ ⎞ (M ) = 23 µ(19) 000 0 ν ⎜ − ⎟ (M ) = (19) ⎜ 000 1 ⎟ ν ⎜ ⎟ ⎜ ⎟ ⎜ 000−1 ⎟ ⎜ 001 0⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 001 0⎟ ⎝ ⎠ ⎜ ⎟ ⎝ ⎠ QFT Lorentz Group • Can write any infinitesimal LT in terms of this basis 1 wµ = ⌦ ( ⇢)µ ⌫ 2 ⇢ M ⌫ • Here ⌦ ⇢ are six real numbers specifying the LT 1 • Any finite LT can be written as ⇤µ =exp ⌦ ( ⇢)µ ⌫ 2 ⇢ M ⌫ ✓ ◆ • The six basis matrices obey the Lie algebra [ ⇢, ⌧⌫]=⌘⌧ ⇢⌫ ⌘⇢⌧ ⌫ + ⌘⇢⌫ ⌧ ⌘⌫ ⇢⌧ M M M − M M − M • Here the row/column index is suppressed. This equation encapsulates the properties of the Lorentz group. We are interested in other matrices which satisfy this algebra !4 2 2 0001 0 00001 ( 03)µ = (16) 0001M ⌫ B C B 0000C B C 0 1 B C 03 µ 0000 B 1000C ( ) = B C (16) M ⌫ B C B 0000C @ A B C B C B 1000C B C 00 0 0 @ A 0 00 101 ( 12)µ = − (17) M ⌫ B C 00 0 0 B 01 0 0C B C B C 0 1 B 00 0 0C 12 µ 00 10 B C ( ) = − @ A (17) M ⌫ B C B 01 0 0C B C B C B 00 0 0C 000 0 B C @ A 0 000 1 1 ( 13)µ = − (18) QFT M ⌫ B C Spinor RepresentationB 000 0C 000 0 B C B C B 010 0C 0 000 1 1 B C ( 13)µ = − @ A (18) M ⌫ B C B 000 0C B C • Interested in findingB otherC representations000 0 of the Lorentz B 010 0C group B C 0 000 01 @ ( A23)µ = (19) M ⌫ B C B 000 1 µC ⌫ µ⌫ • The Clifford algebra is definedB as −γC,γ =2⌘ 1 000 0 B C B 001{ 0C } µ B C • γ with µ =0 0 , 000 1 , 2 , 3 0 are1 a set@ of 4 matrices,A so ( 23)µ = (19) M ⌫ B C 0 2 B 000i 2 1 C 01 µ ⌫ ⌫ µ B − C 0 ⌫ = µ (γ ) =1 (Bγ ) = C1 γ = γ γ = γ γ (20) B 001 0−C 0 1 6 B C 10 − • Simplest representation@ A is 4x4@ matricesA 01 0 σi γ0 = γi = (20) (21) 0 101 0 σi 0 1 − @ A @ A • Where σ i are the Pauli matrices 0 σi γi = (21) 0 σi 0 1 !5 − @ A QFT Spinor Representation • There is a “unique” (up to a similarity transformation) irreducible representation of the Clifford algebra. These γ µ matrices define the chiral (or Weyl) rep • Consider the commutator of two γµ 1 1 1 S⇢ = [γ⇢,γσ]= γ⇢γσ ⌘⇢ 4 2 − 2 • Can show these form a representation of the Lorentz group such that [S⇢,S⌧⌫]=⌘⌧ S⇢⌫ ⌘⇢⌧ S⌫ + ⌘⇢⌫ S⌧ ⌘⌫S⇢⌧ − − !6 QFT Dirac Spinor • Introduce a Dirac spinor, a complex valued object with 4 components which transforms as ↵ ↵ β 1 (x) S[⇤] (⇤− x) ! β • Here ↵ =1 , 2 , 3 , 4 labels the row/column of the S µ ⌫ matrices and 1 ⇢ 1 ⇢ ⇤=exp ⌦ S[⇤] = exp ⌦⇢S 2 ⇢M 2 ✓ ◆ ✓ ◆ • Particular LT specified by ⌦ ⇢ - these are the same for both ⇤ and S[⇤] • Lets look at S [ ⇤ ] in the chiral representation !7 2 2 0001 0001 2 0 00001 0 1 03 µ 03 µ 0000 ( ) ⌫ = ( ) = (16) (16) M B CM ⌫ B C B 0000C B 0000C B C B C B C B C B 1000C B 1000C B C 0001B C @ A @ A 0 00001 ( 03)µ = (16) M ⌫ B C 00 0 0 B 000000 0C 0 B C 0 1 B 01000C 1 00 10 12 µ B 00 C10 ( 12)µ = − ( ) B= −C (17) (17) ⌫ M ⌫ @ B A C M B 01 0 0C B 01 0 0C B C B C B C B C B C 00B 00 0 0 0 0C B 00 0 0C B C B C @ A @ A 0 00 101 ( 12)µ = − (17) M ⌫ B C B 01000 0 0C 0 000 0 B C B 000 0 0C 1 0 1 B 000C1 000 (1 13)µ B= −C (18) ( 13)µ = − M ⌫@ B A C (18) M ⌫ B C B 000 0C B 000 0C B C B C B C B C 000B 010 0 0C B 010 0C B C B C 0 000@ 1 1 A @ ( 13A)µ = − (18) M ⌫ B C B 000 0C B 000C 0 000 0 B C B 0100 0C 1 B 000C 0 0 000 0( 123)µ @= A (19) 23 µ M ⌫ B C ( ) ⌫ = B 000 1 C (19) M B C B − C B 000 1 C B C B − C 000B 001 0 0C B C B C B 001 0C 0 000@ 01 A B ( 23C)µ = (19) @ M A⌫ B C B 000 1 C B 01− C γ0B= C (20) 01 B 001 0C 0 B 0 101 C γ = @ A (20) 0 101 @ A @ A 0 01 i γ i= 0 σ (20) i γ =0 101 (21) i i 0 σ 0 σ 0 1 QFT γ = @ − A (21) Dirac Spinor0 σi 0 1 @ A − @ A i i 0 σ γ1 = i σk 0 (21) Sij = [γi,0γj]=σi 0 ✏1ijk (22) 1 i σk4 0 − −2 0 0 σk 1 • For rotations Sij = [γi, γj]= ✏ijk @ A (22) 4 −2 0 0 σk 1 @ A k ij @1 i j A i ijk σ 0 S = [γ , γ ]= ei'✏σ/2 0 (22) k 4 −2 · 0 k 1 • Writing rotation as ⌦ ij = ✏ ijk ' S[⇤]= 0 σ (23) 0 i' σ/2 1 − 0 @e · A @ A 3 ei⇡ 0 • For a rotation of ' =(0, 0, 2⇡) S[⇤]= 3 = 1 (23) 0 0 ei⇡ 1 − @ A • This means that under 2 ⇡ rotations ↵ ( x ) ↵ ( x ) which is not what happens to a vector - different! rep • For rotations in the chiral representation S [ ⇤ ] is unitary, i.e.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us