Riemann Sums. Part 2

Riemann Sums. Part 2

Lecture 30 Riemann Sums. Part 2 Objectives ......................................... ...................... 2 Theareaunderaparabola ................................ .................... 3 Theareaunderaparabola ................................ .................... 4 Theareaunderaparabola ................................ .................... 5 Theareaunderaparabola ................................ .................... 6 Theareaunderaparabola ................................ .................... 7 Approximating an Integral by Riemann sums . ....................... 8 Theintegralasasignedarea............................. ...................... 9 The geometric interpretation of the left Riemann sum. ........................ 10 The geometric interpretation of the right Riemann sum. ....................... 11 LeftandrightRiemannsums............................. ..................... 12 GeneralleftandrightRiemannsums ....................... ..................... 13 GeneralleftandrightRiemannsums ....................... ..................... 14 The integral as the limit of Riemann sums. ....................... 15 Calculationoflimits................................ ........................ 16 Calculationoflimits................................ ........................ 17 Summary............................................. .................. 18 Comprehension checkpoint ............................. ...................... 19 1 Objectives In this lecture we will continue to work with the definite integral as the limit of Riemann sums. Remember that for a piece-wise continuous function f(x), the definite integral may be calculated as the limit of a Riemann sum Ln or Rn : b f(x) dx = lim Ln = lim Rn, where a n→∞ n→∞ Z n−1 Ln = f(xi)∆x is the left Riemann sum, i=0 Pn Rn = f(xi)∆x is the right Riemann sum, i=1 Pb − a ∆x = are n subintervals of [a,b], n xi = a + i∆x are the points subdividing [a,b]. Riemann sums have a simple geometric interpretation. In this lecture, we will do some elementary calculations with Riemann sums. 2 / 19 The area under a parabola 1 2 Problem. 1. Approximate x dx by L2 and R2 . 0 Z 2. Calculate the Riemann sums Ln and Rn , where n is a positive integer. 1 2 3. Calculate x dx explicitly as the limit of Ln and Rn . 0 Z Solution. The integrand is f(x)= x2 , the interval is [0, 1] . b − a 1 1. To calculate L2 and R2 , we subdivide [0, 1] into two equal parts of length ∆x = = : n 2 1 1 2 2 The subdivision points are 1 0 1 1 x0 = 0, x1 = , x2 = 1 . 2 2 3 / 19 2 The area under a parabola 1 2 The integral x dx represents the area under the parabola y = x2 between x = 0 and x = 1 : 0 Z y y = x2 1 1 4 1 x 0 2 1 1 1 1 1 1 1 1 L2 = f(x0)∆x + f(x1)∆x = f(0) · + f( ) · = 0 · + · = . 2 2 2 2 4 2 8 1 1 1 1 1 1 5 R2 = f(x1)∆x + f(x2)∆x = f( ) · + f(1) · = · + 1 · = . 2 2 2 4 2 2 8 1 1 2 1 2 5 x dx ≈ L2 = (underestimate), x dx ≈ R2 = (overestimate) 0 8 0 8 Z Z 4 / 19 The area under a parabola 2. To calculate the general Riemann sums Ln , Rn , b − a 1 we subdivide [0, 1] into n equal parts of length ∆x = = . n n 1 i The points of the subdivision are x = x0 + i∆x =0+ i = , where i = 0, 1,...,n . i n n 2 n−1 n−1 i i n−1 i 1 1 n−1 L = f(x )∆x = f = = i2, n i n n n n n3 i=0 i=0 i=0 i=0 P P P 2 P n n i i n i 1 1 n R = f(x )∆x = f = = i2 . n i n n n n n3 i=1 i=1 i=1 i=1 P P P P As we know from Algebra (or can prove by induction), n n(n + 1)(2n + 1) i2 = 12 + 22 + 32 + · · · + n2 = i=1 6 P 5 / 19 3 The area under a parabola Therefore, n−1 1 2 (n − 1)n(2n − 1) Ln = 3 i = 3 and n i=0 6n Pn 1 2 n(n + 1)(2n + 1) Rn = 3 i = 3 . n i=1 6n 1 P 2 The Riemann sums Ln and Rn approximate x dx and, 0 since f(x)= x2 is increasing on [0, 1], we haveZ 1 2 Ln ≤ x dx ≤ Rn for any positive integer n . Calculate the limits: 0 Z 1 1 (n − 1)n(2n − 1) 1 − n · 1 · 2 − n 1 · 1 · 2 1 lim Ln = lim = lim = = , n→∞ n→∞ n3 n→∞ 6 6 6 3 1 1 n(n + 1)(2n + 1) 1 · 1+ n · 2+ n 1 · 1 · 2 1 lim Rn = lim = lim = = . n→∞ n→∞ n3 n→∞ 6 6 6 3 6 / 19 The area under a parabola In the inequality for the integral, let n →∞: 1 2 Ln ≤ x dx ≤ Rn 0 1 Z 2 1 = Therefore, x dx = . n →∞ n →∞ 0 3 1 Z 3 y y = x2 1 2 1 x dx = lim Ln = 0 n→∞ 3 Z 1 2 1 x dx = lim Rn = 0 n→∞ 3 Z x 0 1 7 / 19 4 Approximating an Integral by Riemann sums 2 3 Problem. 1. Approximate (x − 2x)dx by L6 and R6 . −1 Z 2. Calculate the Riemann sums Ln and Rn , where n is a positive integer. 2 3 3. Calculate (x − 2x)dx as the limit of Ln and Rn . −1 Z Solution. The integrand is f(x)= x3 − 2x , the interval is [−1, 2] . 1. To calculate L6 and R6 , we subdivide [−1, 2] into six equal parts b − a 2 − (−1) 3 1 of length ∆x = = = = : n 6 6 2 x0 x1 x2 x3 x4 x5 x6 −1 −.5 0 .5 1 1.5 2 The subdivision points are x0 = −1, x1 = −.5, x2 =0, x3 = .5, x4 =1, x5 =1.5, x6 =2. i In abbreviated form, xi = x + i∆x = −1+ , where i =0, 1,..., 6 . 0 2 8 / 19 The integral as a signed area 2 3 The integral (x − 2x)dx represents the signed area −1 Z 3 between the graph of y = x − 2x and the x− axis: y 3 y = x − 2x + + x −1 − 2 9 / 19 5 The geometric interpretation of the left Riemann sum 5 L6 = f(xi)∆x i=0 = fP(x0)∆x + f(x1)∆x + f(x2)∆x + f(x3)∆x + f(x4)∆x + f(x5)∆x 1 3 = f(−1) + f(−.5) + f(0) + f(.5) + f(1) + f(1.5) · = 2 16 y 3 y = x − 2x .5 1 x −1 −.5 1.5 2 10 / 19 The geometric interpretation of the right Riemann sum 6 R6 = f(xi)∆x i=1 = fP(x1)∆x + f(x2)∆x + f(x3)∆x + f(x4)∆x + f(x5)+ f(x6)∆x 1 27 = f(−.5) + f(0) + f(.5) + f(1) + f(1.5) + f(2) · = 2 16 3 y y = x − 2x .5 1 x −1 −.5 1.5 2 11 / 19 6 Left and right Riemann sums 3 27 We have calculated L6 = and R6 = . 16 16 Both left and right Riemann sums approximate the value of the integral: 3 3 3 3 3 27 (x − 2x)dx ≈ and (x − 2x)dx ≈ . −1 16 −1 16 Z Z The exact value of the integral, as we will calculate soon, is 2 3 3 12 (x − 2x)dx = = . −1 4 16 Z L6 Exact value R6 3 12 27 16 16 16 12 / 19 General left and right Riemann sums 2 3 To compute Ln and Rn for (x − 2x)dx , recall the formulas: −1 Z n−1 n Ln = f(xi)∆x and Rn = f(xi)∆x , where i=0 i=1 P P 2 − (−1) 3 3i ∆x = = and x = x0 + i∆x = −1+ , i = 0, 1, 2,...,n . n n i n 3 3i 3i 3i Since f(x )= f −1+ = −1+ − 2 −1+ , we find i n n n 3 n−1 n−1 3i 3i 3 L = f(x )∆x = −1+ − 2 −1+ and n i n n n i=0 i=0 " # P P 3 n n 3i 3i 3 R = f(x )∆x = −1+ − 2 −1+ . n i n n n i=1 i=1 " # P P 13 / 19 7 General left and right Riemann sums After algebraic manipulations, we get n−1 n−1 n−1 n−1 n−1 3 3 27 2 27 3 3 9 81 2 81 3 Ln = 1+ i − i + i = 1+ i − i + i n i n n2 n3 n i n2 i n3 i n4 i =0 =0 =0 =0 =0 P P P 2 P P (∗) 3 9 (n − 1)n 81 (n − 1)n(2n − 1) 81 (n − 1)n = n + − + n n2 2 n3 6 n4 2 9 1 27 1 1 81 1 2 =3+ 1 − − 1 − 1 2 − + 1 − 1 . 2 n 2 n n 4 n 9 81 3 So lim Ln =3+ − 27+ = . n→∞ 2 4 4 n 3 3 27 27 (∗) 3 Similarly, Rn = 1+ i − i2 + i3 , and lim Rn = . n i n n2 n3 n→∞ 4 =1 In our calculations (*)P , we used the following formulas: n n n(n + 1) n n(n + 1)(2n + 1) n n(n + 1) 2 1= n, i = , i2 = , i3 = i i 2 i 6 i 2 =1 =1 =1 =1 P P P P 14 / 19 The integral as the limit of Riemann sums b b Since f(x)dx = lim Ln or f(x)dx = lim Rn , we have n→∞ n→∞ Za Za 2 n−1 3 3 3 27 2 27 3 3 (x − 2x)dx = lim 1+ i − 2 i + 3 i = or −1 n→∞ n n n n 4 i=0 Z X 2 n 3 3 3 27 2 27 3 3 (x − 2x)dx = lim 1+ i − 2 i + 3 i = . −1 n→∞ n n n n 4 Z i=1 2 X 3 3 Finally, (x − 2x)dx = . −1 4 Z ☞ The calculation of definite integrals using Riemann sums is tedious. A more efficient method of calculation (using the Fundamental Theorem of Calculus) will be given in the next lecture.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us