BOTTOM, STRANGE MESONS (B = ±1, S = ∓1) 0 0 ∗ Bs = Sb, Bs = S B, Similarly for Bs ’S

BOTTOM, STRANGE MESONS (B = ±1, S = ∓1) 0 0 ∗ Bs = Sb, Bs = S B, Similarly for Bs ’S

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) BOTTOM, STRANGE MESONS (B = ±1, S = ∓1) 0 0 ∗ Bs = sb, Bs = s b, similarly for Bs ’s 0 P − Bs I (J ) = 0(0 ) I , J, P need confirmation. Quantum numbers shown are quark-model predictions. Mass m 0 = 5366.89 ± 0.19 MeV Bs m 0 − mB = 87.42 ± 0.19 MeV Bs Mean life τ = (1.509 ± 0.004) × 10−12 s cτ = 452.4 µm 12 −1 ∆Γ 0 = Γ 0 − Γ 0 = (0.088 ± 0.006) × 10 s Bs BsL Bs H 0 0 Bs -Bs mixing parameters 12 −1 ∆m 0 = m 0 – m 0 = (17.757 ± 0.021) × 10 h¯ s Bs Bs H BsL = (1.1688 ± 0.0014) × 10−8 MeV xs = ∆m 0 /Γ 0 = 26.72 ± 0.09 Bs Bs χs = 0.499304 ± 0.000005 0 CP violation parameters in Bs ¯ ¯2 −3 Re(ǫ 0 )/(1+ ¯ǫ 0 ¯ )=(−0.15 ± 0.70) × 10 Bs Bs 0 + − CKK (Bs → K K )=0.14 ± 0.11 0 + − SKK (Bs → K K )=0.30 ± 0.13 0 ∓ ± rB(Bs → Ds K )=0.53 ± 0.17 0 ± ∓ ◦ δB(Bs → Ds K ) = (3 ± 20) −2 CP Violation phase βs = (1.1 ± 1.6) × 10 rad ¯ ¯ ¯λ¯ (B0 → J/ψ(1S)φ)=0.964 ± 0.020 ¯ ¯ s ¯λ¯ = 1.001 ± 0.017 +0.8 A, CP violation parameter = 0.5−0.7 C, CP violation parameter = −0.3 ± 0.4 S, CP violation parameter = −0.1 ± 0.4 L ∗ 0 ACP (Bs → J/ψ K (892) ) = −0.05 ± 0.06 k ∗ 0 ACP (Bs → J/ψ K (892) )=0.17 ± 0.15 ⊥ ∗ 0 ACP (Bs → J/ψ K (892) ) = −0.05 ± 0.10 + − ACP (Bs → π K ) = 0.26 ± 0.04 0 + − ∗ 0 ACP (Bs → [K K ]D K (892) ) = −0.04 ± 0.07 HTTP://PDG.LBL.GOV Page1 Created:6/5/201818:58 Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) 0 + − ∗ 0 ACP (Bs → [π K ]D K (892) ) = −0.01 ± 0.04 0 + − ∗ 0 ACP (Bs → [π π ]D K (892) )=0.06 ± 0.13 ∆ A (Bs → φγ) = −1.0 ± 0.5 −12 ∆a⊥ < 1.2 × 10 GeV, CL = 95% −14 ∆ak = (−0.9 ± 1.5) × 10 GeV −14 ∆aX = (1.0 ± 2.2) × 10 GeV −14 ∆aY = (−3.8 ± 2.2) × 10 GeV Re(ξ) = −0.022 ± 0.033 Im(ξ)=0.004 ± 0.011 b B0 These branching fractions all scale with B( → s ). B0 D− + The branching fraction B( s → s ℓ νℓ anything) is not a pure mea- b B0 surement since the measured product branching fraction B( → s ) × B0 D− + b B0 B( s → s ℓ νℓ anything) was used to determine B( → s ), as described in the note on “B0-B0 Mixing” For inclusive branching fractions, e.g., B → D± anything, the values usually are multiplicities, not branching fractions. They can be greater than one. Scale factor/ p B0 DECAY MODES c s DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/ ) − Ds anything (93 ±25 )% – ℓνℓ X ( 9.6 ± 0.8 )% – e+ ν X − ( 9.1 ± 0.8 )% – µ+ ν X − (10.2 ± 1.0 )% – − + Ds ℓ νℓ anything [a] ( 8.1 ± 1.3 )% – ∗− + Ds ℓ νℓ anything ( 5.4 ± 1.1 )% – − + − → −3 Ds1(2536) µ νµ, Ds1 ( 2.6 ± 0.7 ) × 10 – ∗− 0 D K S − + − → −3 Ds1(2536) X µ ν, Ds1 ( 4.4 ± 1.3 ) × 10 – D0 K + − + − → −3 Ds2(2573) X µ ν, Ds2 ( 2.7 ± 1.0 ) × 10 – D0 K + − + −3 Ds π ( 3.00± 0.23) × 10 2320 − + −3 Ds ρ ( 6.9 ± 1.4 ) × 10 2249 − + + − −3 Ds π π π ( 6.1 ± 1.0 ) × 10 2301 − + − → −5 Ds1(2536) π , Ds1 ( 2.5 ± 0.8 ) × 10 – − + − Ds π π ∓ ± −4 Ds K ( 2.27± 0.19) × 10 2293 − + + − −4 Ds K π π ( 3.2 ± 0.6 ) × 10 2249 + − −3 Ds Ds ( 4.4 ± 0.5 ) × 10 1824 HTTP://PDG.LBL.GOV Page2 Created: 6/5/2018 18:58 Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) − + −4 Ds D ( 2.8 ± 0.5 ) × 10 1875 D+ D− ( 2.2 ± 0.6 ) × 10−4 1925 D0 D0 ( 1.9 ± 0.5 ) × 10−4 1930 ∗− + −3 Ds π ( 2.0 ± 0.5 ) × 10 2265 ∗∓ ± −4 Ds K ( 1.33± 0.35) × 10 – ∗− + −3 Ds ρ ( 9.6 ± 2.1 ) × 10 2191 ∗+ − ∗− + Ds Ds + Ds Ds ( 1.38± 0.16) % 1742 ∗+ ∗− Ds Ds ( 1.44± 0.20) % S=1.1 1655 (∗)+ (∗)− Ds Ds ( 4.5 ± 1.4 )% – D∗0 K 0 ( 2.8 ± 1.1 ) × 10−4 2278 D0 K 0 ( 4.3 ± 0.9 ) × 10−4 2330 D0 K − π+ ( 1.04± 0.13) × 10−3 2312 D0 K ∗(892)0 ( 4.4 ± 0.6 ) × 10−4 2264 D0 K ∗(1410) ( 3.9 ± 3.5 ) × 10−4 2114 0 ∗ −4 D K 0(1430) ( 3.0 ± 0.7 ) × 10 2113 0 ∗ −4 D K 2(1430) ( 1.1 ± 0.4 ) × 10 2113 D0 K ∗(1680) < 7.8 × 10−5 CL=90% 1997 0 ∗ −4 D K 0(1950) < 1.1 × 10 CL=90% 1890 0 ∗ −5 D K 3(1780) < 2.6 × 10 CL=90% 1971 0 ∗ −5 D K 4(2045) < 3.1 × 10 CL=90% 1837 D0 K − π+ (non-resonant) ( 2.1 ± 0.8 ) × 10−4 2312 ∗ − + ∗ −4 Ds2(2573) π , Ds2 → ( 2.6 ± 0.4 ) × 10 – D0 K − ∗ − + ∗ −5 Ds1(2700) π , Ds1 → ( 1.6 ± 0.8 ) × 10 – D0 K − ∗ − + ∗ −5 Ds1(2860) π , Ds1 → ( 5 ± 4 ) × 10 – D0 K − ∗ − + ∗ −5 Ds3(2860) π , Ds3 → ( 2.2 ± 0.6 ) × 10 – D0 K − D0 K + K − ( 4.4 ± 2.0 ) × 10−5 2243 0 −6 D f0(980) < 3.1 × 10 CL=90% 2242 D0 φ ( 3.0 ± 0.8 ) × 10−5 2235 D∗∓ π± < 6.1 × 10−6 CL=90% – −4 ηc φ ( 5.0 ± 0.9 ) × 10 1663 + − −4 ηc π π ( 1.8 ± 0.7 ) × 10 1840 J/ψ(1S)φ ( 1.08± 0.08) × 10−3 1588 . + 0.17 −5 J/ψ(1S)φφ ( 1 24− 0.19) × 10 764 J/ψ(1S)π0 < 1.2 × 10−3 CL=90% 1787 J/ψ(1S)η ( 4.0 ± 0.7 ) × 10−4 S=1.4 1733 0 −5 J/ψ(1S)K S ( 1.88± 0.15) × 10 1743 J/ψ(1S)K ∗(892)0 ( 4.1 ± 0.4 ) × 10−5 1637 J/ψ(1S)η′ ( 3.3 ± 0.4 ) × 10−4 1612 HTTP://PDG.LBL.GOV Page3 Created: 6/5/2018 18:58 Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) J/ψ(1S)π+ π− ( 2.09± 0.23) × 10−4 S=1.3 1775 −6 J/ψ(1S)f0(500), f0 → < 4 × 10 CL=90% – π+ π− J/ψ(1S)ρ, ρ → π+ π− < 4 × 10−6 CL=90% – −4 J/ψ(1S)f0(980), f0 → ( 1.28± 0.18) × 10 S=1.7 – π+ π− −6 J/ψ(1S)f2(1270), f2 → ( 1.1 ± 0.4 ) × 10 – π+ π− −7 J/ψ(1S)f2(1270)0, f2 → ( 7.5 ± 1.8 ) × 10 – π+ π− −6 J/ψ(1S)f2(1270)k, f2 → ( 1.09± 0.34) × 10 – π+ π− −6 J/ψ(1S)f2(1270)⊥, f2 → ( 1.3 ± 0.8 ) × 10 – π+ π− → . + 0.7 −5 J/ψ(1S)f0(1370), f0 ( 4 5 − 4.0 ) × 10 – π+ π− → + 0.40 −5 J/ψ(1S)f0(1500), f0 ( 2.11− 0.29) × 10 – π+ π− ′ ′ −6 J/ψ(1S)f 2(1525)0, f 2 → ( 1.07± 0.24) × 10 – π+ π− ′ ′ → . + 2.7 −7 J/ψ(1S)f 2(1525)k, f 2 ( 1 3 − 0.9 ) × 10 – π+ π− ′ ′ −7 J/ψ(1S)f 2(1525)⊥, f 2 → ( 5 ± 4 ) × 10 – π+ π− → +11.0 −6 J/ψ(1S)f0(1790), f0 ( 5.0 − 1.1 ) × 10 – π+ π− + − + 1.1 −5 J/ψ(1S)π π (nonresonant) ( 1.8 − 0.4 ) × 10 1775 J/ψ(1S)K 0 π+ π− < 4.4 × 10−5 CL=90% 1675 J/ψ(1S)K + K − ( 7.9 ± 0.7 ) × 10−4 1601 J/ψ(1S)K 0 K − π+ + c.c. ( 9.3 ± 1.3 ) × 10−4 1538 J/ψ(1S)K 0 K + K − < 1.2 × 10−5 CL=90% 1333 ′ −4 J/ψ(1S)f 2(1525) ( 2.6 ± 0.6 ) × 10 1304 J/ψ(1S)p p < 4.8 × 10−6 CL=90% 982 J/ψ(1S)γ < 7.3 × 10−6 CL=90% 1790 J/ψ(1S)π+ π− π+ π− ( 7.8 ± 1.0 ) × 10−5 1731 −5 J/ψ(1S)f1(1285) ( 7.0 ± 1.4 ) × 10 1460 ψ(2S)η ( 3.3 ± 0.9 ) × 10−4 1338 ψ(2S)η′ ( 1.29± 0.35) × 10−4 1158 ψ(2S)π+ π− ( 7.1 ± 1.3 ) × 10−5 1397 ψ(2S)φ ( 5.4 ± 0.6 ) × 10−4 1120 ψ(2S)K − π+ ( 3.12± 0.30) × 10−5 1310 ψ(2S)K ∗(892)0 ( 3.3 ± 0.5 ) × 10−5 1196 −4 χc1 φ ( 2.04± 0.30) × 10 1274 π+ π− ( 7.0 ± 0.8 ) × 10−7 2680 HTTP://PDG.LBL.GOV Page4 Created: 6/5/2018 18:58 Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) π0 π0 < 2.1 × 10−4 CL=90% 2680 η π0 < 1.0 × 10−3 CL=90% 2654 η η < 1.5 × 10−3 CL=90% 2627 ρ0 ρ0 < 3.20 × 10−4 CL=90% 2569 η′ η′ ( 3.3 ± 0.7 ) × 10−5 2507 η′ φ < 8.2 × 10−7 CL=90% 2495 + − −6 φf0(980), f0(980) → π π ( 1.12± 0.21) × 10 – → .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us