
Algebraic constructions on set partitions 22/03/2007 1 de 16 Algebraic constructions on set partitions Maxime Rey Laboratoire d’Informatique de l’Institut Gaspard-Monge Universit´eParis-Est 2007 July 6 Algebraic constructions on set partitions 22/03/2007 2 de 16 Preamble Several works mixed combinatorial algorithms, Hopf algebras, partial orders. Goal : Similar construction over set partitions. Algebraic constructions on set partitions 22/03/2007 2 de 16 Preamble Several works mixed combinatorial algorithms, Hopf algebras, partial orders. permutations FQSym permutohedron binary trees PBT associahedron Std. Young tableaux FSym weak order on SYT compositions NCSF hypercube ordered set partitions WQSym pseudo-permutohedron plane trees T D quotient of pp segmented compositions TC quotient of pp Goal : Similar construction over set partitions. Algebraic constructions on set partitions 22/03/2007 2 de 16 Preamble combinatorial algorithms : Hopf algebra : partial order : permutations FQSym permutohedron binary trees PBT associahedron Std. Young tableaux FSym weak order on SYT compositions NCSF hypercube ordered set partitions WQSym pseudo-permutohedron plane trees T D quotient of pp segmented compositions TC quotient of pp Goal : Similar construction over set partitions. Algebraic constructions on set partitions 22/03/2007 2 de 16 Preamble combinatorial algorithms : Robinson-Schensted correspondence and jeu de taquin, Hopf algebra : partial order : permutations FQSym permutohedron binary trees PBT associahedron Std. Young tableaux FSym weak order on SYT compositions NCSF hypercube ordered set partitions WQSym pseudo-permutohedron plane trees T D quotient of pp segmented compositions TC quotient of pp Goal : Similar construction over set partitions. Algebraic constructions on set partitions 22/03/2007 2 de 16 Preamble combinatorial algorithms : Robinson-Schensted correspondence and jeu de taquin, Hopf algebra : FSym (Poirier-Reutenauer Hopf algebra), partial order : permutations FQSym permutohedron binary trees PBT associahedron Std. Young tableaux FSym weak order on SYT compositions NCSF hypercube ordered set partitions WQSym pseudo-permutohedron plane trees T D quotient of pp segmented compositions TC quotient of pp Goal : Similar construction over set partitions. Algebraic constructions on set partitions 22/03/2007 2 de 16 Preamble combinatorial algorithms : Robinson-Schensted correspondence and jeu de taquin, Hopf algebra : FSym (Poirier-Reutenauer Hopf algebra), partial order : weak order on SYT. permutations FQSym permutohedron binary trees PBT associahedron Std. Young tableaux FSym weak order on SYT compositions NCSF hypercube ordered set partitions WQSym pseudo-permutohedron plane trees T D quotient of pp segmented compositions TC quotient of pp Goal : Similar construction over set partitions. Algebraic constructions on set partitions 22/03/2007 2 de 16 Preamble combinatorial algorithms : Robinson-Schensted correspondence and jeu de taquin, Hopf algebra : FSym (Poirier-Reutenauer Hopf algebra), partial order : weak order on SYT. permutations FQSym permutohedron binary trees PBT associahedron Std. Young tableaux FSym weak order on SYT compositions NCSF hypercube ordered set partitions WQSym pseudo-permutohedron plane trees T D quotient of pp segmented compositions TC quotient of pp Goal : Similar construction over set partitions. Algebraic constructions on set partitions 22/03/2007 2 de 16 Preamble combinatorial algorithms : Robinson-Schensted correspondence and jeu de taquin, Hopf algebra : FSym (Poirier-Reutenauer Hopf algebra), partial order : weak order on SYT. permutations FQSym permutohedron binary trees PBT associahedron Std. Young tableaux FSym weak order on SYT compositions NCSF hypercube ordered set partitions WQSym pseudo-permutohedron plane trees T D quotient of pp segmented compositions TC quotient of pp Goal : Similar construction over set partitions. Algebraic constructions on set partitions 22/03/2007 3 de 16 Related works M. Rosas, B. Sagan, Symmetric Functions in Noncommuting Variables, Transactions of the American Mathematical Society, to appear. N. Bergeron and M. Zabrocki, The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree preprint math.CO/0509265. NCSym is a non-commutative and co-commutative Hopf algebra. Algebraic constructions on set partitions 22/03/2007 4 de 16 Results P, a self-dual Hopf algebra on set partitions Bidendriform ⇒ free, co-free and self-dual Multiplicative bases PBT ֒→ P ֒→ FQSym Bell order, a partial order on set partitions Intervals of the Bell order describe the product of P Scrolling, a jeu de taquin-like on set partitions Robinson-Schensted analogue on set partitions Plactic-like monoid structure Algebraic constructions on set partitions 22/03/2007 4 de 16 Results P, a self-dual Hopf algebra on set partitions Bidendriform ⇒ free, co-free and self-dual Multiplicative bases PBT ֒→ P ֒→ FQSym Bell order, a partial order on set partitions Intervals of the Bell order describe the product of P Scrolling, a jeu de taquin-like on set partitions Robinson-Schensted analogue on set partitions Plactic-like monoid structure Algebraic constructions on set partitions 22/03/2007 4 de 16 Results P, a self-dual Hopf algebra on set partitions Bidendriform ⇒ free, co-free and self-dual Multiplicative bases PBT ֒→ P ֒→ FQSym Bell order, a partial order on set partitions Intervals of the Bell order describe the product of P Scrolling, a jeu de taquin-like on set partitions Robinson-Schensted analogue on set partitions Plactic-like monoid structure Algebraic constructions on set partitions 22/03/2007 4 de 16 Results P, a self-dual Hopf algebra on set partitions Bidendriform ⇒ free, co-free and self-dual Multiplicative bases PBT ֒→ P ֒→ FQSym Bell order, a partial order on set partitions Intervals of the Bell order describe the product of P Scrolling, a jeu de taquin-like on set partitions Robinson-Schensted analogue on set partitions Plactic-like monoid structure A. Burstein and I. Lankham ”Combinatorics of Patience Sorting Piles”, SLC54A. Algebraic constructions on set partitions 22/03/2007 4 de 16 Results P, a self-dual Hopf algebra on set partitions Bidendriform ⇒ free, co-free and self-dual Multiplicative bases PBT ֒→ P ֒→ FQSym Bell order, a partial order on set partitions Intervals of the Bell order describe the product of P Scrolling, a jeu de taquin-like on set partitions Robinson-Schensted analogue on set partitions Plactic-like monoid structure Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 ∅ A. Burstein and I. Lankham ”Combinatorics of Patience Sorting Piles”, SLC54A. Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 ∅ 5 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 5 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 5 8 5 < 8 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 5 8 5 < 8 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 5 8 6 5 < 6 < 8 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 5 ↑ 5 < 6 < 8 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 5 6 5 < 6 < 8 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 5 6 7 7 6 < 7 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 ↑ 8 5 6 7 1 1 < 5 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 5 8 1 6 7 1 < 5 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 5 6 1 4 7 4 1 < 4 < 6 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 5 6 1 4 7 9 9 7 < 9 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 6 5 4 1 2 7 9 2 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 6 5 4 7 1 2 3 9 3 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 6 5 4 7 1 2 3 9 < Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 6 V 5 4 7 1 2 3 9 < Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 P (σ) 6 V = 5 4 7 ←→ {{5, 1}, {8, 6, 4, 2}, {7, 3}, {9}} 1 2 3 9 < Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 Q(σ)= P (σ−1) 6 V = 5 3 9 ←→ {{5, 1}, {8, 6, 3, 2}, {9, 4}, {7}} 1 2 4 7 < Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue σ = 586714923 8 Q(σ)= P (σ−1) 6 V = 5 3 9 ←→ {{5, 1}, {8, 6, 3, 2}, {9, 4}, {7}} 1 2 4 7 < σ 7−→ (P (σ),Q(σ)) is not a surjection. Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue There is no permutation σ such that: 3 3 P (σ)= 1 2 Q(σ)= 1 2 Algebraic constructions on set partitions 22/03/2007 5 de 16 Combinatorial algorithm Robinson-Schensted analogue Definition For σ, π ∈ S, we write σ ≡ π , if P (σ)= P (π).
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages117 Page
-
File Size-