Curie-Weiss Law – Weiss Internal Field, Weiss Exchange Field, Weiss Molecular Field

Curie-Weiss Law – Weiss Internal Field, Weiss Exchange Field, Weiss Molecular Field

MSE 7025 Magnetic Materials (and Spintronics) Lecture 4: Category of Magnetism Chi-Feng Pai [email protected] Course Outline • Time Table Week Date Lecture 1 Feb 24 Introduction 2 March 2 Magnetic units and basic E&M 3 March 9 Magnetization: From classical to quantum 4 March 16 No class (APS March Meeting, Baltimore) 5 March 23 Category of magnetism 6 March 30 From atom to atoms: Interactions I (oxides) 7 April 6 From atom to atoms: Interactions II (metals) 8 April 13 Magnetic anisotropy 9 April 20 Mid-term exam 10 April 27 Domain and domain walls Course Outline • Time Table Week Date Lecture 11 May 4 Magnetization process (SW or Kondorsky) 12 May 11 Characterization: VSM, MOKE 13 May 18 Characterization: FMR 14 May 25 Transport measurements in materials I: Hall effect 15 June 1 Transport measurements in materials II: MR 16 June 8 MRAM: TMR and spin transfer torque 17 June 15 Guest lecture (TBA) 18 June 22 Final exam Hund’s Rules • So, how do we determine the ground state? – For a given atom with multiple electrons, the total orbital angular momentum L and spin angular momentum S can have (2l+1)(2s+1) combinations. (j) Blundell, Magnetism in Condensed Matter (2001) Hund’s Rules Coulomb interaction Spin-orbit interaction Note: Apply strictly to atoms, loosely to localized orbitals in solids, not at all to free electrons Blundell, Magnetism in Condensed Matter (2001) Hund’s Rules • So, how do we determine the ground state? Blundell, Magnetism in Condensed Matter (2001) Hund’s Rules • Why Hund’s rules are important? Blundell, Magnetism in Condensed Matter (2001) Hund’s Rules • Why Hund’s rules are important? Hund’s Rules • Why Hund’s rules are important? eff eff g B j( j 1) z zgm j B Blundell, Magnetism in Condensed Matter (2001) Magnetization “M” and magnetic susceptibility “χ” • Magnetic susceptibility Ferromagnetism 0 0 Magnetization “M” and magnetic susceptibility “χ” • Magnetic susceptibility Hummel, Electronic Properties of Materials (2000) Magnetization “M” and magnetic susceptibility “χ” • Magnetic susceptibility (T-dependence) Diamagnetism Category of magnetism Different behaviors of susceptibility 1 Coey, Magnetism and Magnetic Materials (2009) Category of magnetism • Diamagnetism Lenz law C. M. Hurd, Contemporary Physics, 23:5, 469 (1982) Category of magnetism • Paramagnetism Ferromagnetic material above TORD (Tc) becomes paramagnetic C. M. Hurd, Contemporary Physics, 23:5, 469 (1982) Category of magnetism • Ferromagnetism M s J 0 Ferromagnetic material below TORD (Tc) C. M. Hurd, Contemporary Physics, 23:5, 469 (1982) Category of magnetism • Antiferromagnetism J 0 p Antiferromagnetic material below TORD (TN) C. M. Hurd, Contemporary Physics, 23:5, 469 (1982) Category of magnetism • Ferrimagnetism (“Inverse” spinel) M s C. M. Hurd, Contemporary Physics, 23:5, 469 (1982) Category of magnetism • Ferrimagnetism (tetrahedral) (octahedral) M s J 0 C. M. Hurd, Contemporary Physics, 23:5, 469 (1982) Category of magnetism • Ferrimagnetism – Iron garnets, R3Fe2(FeO4)3 – Yttrium Iron Garnet (YIG), Y3Fe2(FeO4)3 – “Fruit-fly for magnetic studies” Charles Kittel Category of magnetism • Ferro, antiferro, and ferrimagnetism Exchange interaction J 0 J 0 Category of magnetism • Magnetic states of different elements at room temp. Diamagnetism • Classical diamagnetism – Diamagnetism is present in all matter, but is often obscured by paramagnetism or ferromagnetism. – Classically can be viewed as a manifestation of Lenz law. – However, the classical picture is not accurate (Bohr-van Leeuwen theorem). – Still, let’s look at the classical (orbital) picture of diamagnetism, which is related to the Larmor precession LI ddLII Larmor e e e2 d dL m x2 y 2 B x 2 y 2 B e 2me 2 m e 4 m e Diamagnetism • Classical diamagnetism 22 x2 y 2 x 2 y 2 z 2 r 2 33 er22 dia dB 6me 22 nv e0 r e M H M B n e B e2 d dL dia m x200 y 2 v dia B 6m x 2 y 2 B e e 2me 2 m e 4 m e nv N/ V Diamagnetism • Quantum diamagnetism – Consider the Hamiltonian operator (total energy operator) and momentum operator… pA e 2 Hˆ p i 2me 22ie e HAAAˆ 22 2me 2 m e 2 m e BA Consider magnetic field only along z-direction yB xB A , ,0 A 0 22 Diamagnetism • Quantum diamagnetism – Consider the Hamiltonian operator (total energy operator) and momentum operator… pA e 2 Lz i x y Hˆ p i yx 2me 2 2 2 ˆ 2ie B e B 2 2 H x y x y 2me 2 m e y x 2 8 m e Kinetic energy (Orbital) paramagnetism Diamagnetism 2 2 2 2 e B2 2 e B 2 Edia x y r 8mmee 12 Diamagnetism • Quantum diamagnetism – Consider the Hamiltonian operator (total energy operator) and momentum operator… e2 B 2 e 2 B 2 E x2 y 2 r 2 dia 8mmee 12 E eB2 dia r 2 Bm6 e 22 nv e0 r 2 dia Zreff (indep. of T) 6me Paramagnetism • Classical paramagnetism – Consider an ensemble of atoms (moments) – Statistical approach E EUB μ B cos P exp(probability) kTB cos exp B cos k T d B z cos expB cos k T d B dsin d d (solid angle) Paramagnetism • Classical paramagnetism – Consider an ensemble of atoms (moments) – Statistical approach cos exp B cos k T sin d B z expB cos k T sin d B cos exp B cos k T d cos B expB cos k T d cos B 1 xexp sx dx 1 1 s B kB T expsx dx 1 x cos Paramagnetism • Classical paramagnetism – Consider an ensemble of atoms (moments) – Statistical approach 1 xexp sx dx s es e s e s e s 1 z 1 ss expsx dx s e e 1 1 z coths L ( s ) (Langevin function) s At low field and/or high T B s 0 L( s ) s / 3 3kTB Paramagnetism • Classical paramagnetism – Curie’s law 2 nv0 C para M H 0 n v z B 3kB T T Langevin function Paramagnetism • Quantum paramagnetism – Discrete possible states – Consider the total angular momentum quantum number j z gm j B E U μ B gmjB B j mjexp gm j B B / k B T mjj M nv g m j B n v g B j expgmj B B / k B T mjj Paramagnetism • Quantum paramagnetism – Discrete possible states – Consider the total angular momentum quantum number j M nv g B j B j()() x M s B j x (Saturation x gBB jB/ k T Ms n v g B j magnetization) Brillouin function 2j 1 2 j 1 1 x Bj ( x ) coth x coth 2j 2 j 2 j 2 j Paramagnetism • Quantum paramagnetism – Discrete possible states – Consider the total angular momentum quantum number j Brillouin function j j 1/ 2 2j 1 2 j 1 1 x B( x ) coth x coth B()() x Lj x Bj 1/2 ( x ) tanh( x ) j 2j 2 j 2 j 2 j Langevin function (spin-1/2 system) Paramagnetism • Quantum paramagnetism – Discrete possible states – Consider the total angular momentum quantum number j Brillouin function jx1 3 Bj () x O x when x 1 3 j 2j 1 2 j 1 1 x Bj ( x ) coth x coth 2j j11 x 2 j 2 j j g 2B j jB M nv g B j n v g B 33j kB T Paramagnetism • Quantum paramagnetism – Discrete possible states – Consider the total angular momentum quantum number j 2 j j1 gB B Mn v 2 3kTB eff 2 2 nvB0 j j1 g nv0 C para para-J 3k T T 3kTB B (Curie’s law) eff gB j( j 1) Paramagnetism • Quantum paramagnetism – Discrete possible states – Consider the total angular momentum quantum number j – Curie constant C for quantum scenario C T 2 n j j1 g n 2 C vB0 v 0 eff 33kkBB Paramagnetism • Quantum paramagnetism – Brillouin function when x 1 Ms n v g B j when x 1 Paramagnetism • Quantum paramagnetism when x 1 Ms n v g B j when x 1 Paramagnetism • Pauli paramagnetism – Free electron model – Band structure (Fermi energy) http://nptel.ac.in/courses/115103038/module2/lec7/ Ferromagnetism • Curie-Weiss law – Weiss internal field, Weiss exchange field, Weiss molecular field 2000 HME (Remember Hw2?) MHHHHM applied E applied CM THMapplied MCC HTCTTapplied c Ferromagnetism • Curie-Weiss law – Weiss internal field, Weiss exchange field, Weiss molecular field 2000 HME (Remember Hw2?) – Connection to “exchange interaction” and total Hamiltonian ˆ H JijSSSBSBB i j g B i g B i mf i, j i i BBHHHMmf 0 E 0 Ferromagnetism • Curie-Weiss law – Weiss internal field, Weiss exchange field, Weiss molecular field MCC HTCTTapplied c Ferromagnetism • Curie-Weiss law – Weiss internal field, Weiss exchange field, Weiss molecular field CC TCTT c • Curie Temperature Tc 2 nv 0 eff TCc 3kB Ferromagnetism • Curie-Weiss law – Weiss internal field, Weiss exchange field, Weiss molecular field – Again, borrow from theory of quantum paramagnetism MngjBxMBxMv B j( ) s j ( ) s tanh x Ms n v g B j xgjBkTgjBBBB// 0 H applied MkT 11kBB T k T M x Happlied x H applied gj BB00j 1/ 2 Ferromagnetism • Curie-Weiss law – Weiss internal field, Weiss exchange field, Weiss molecular field – Again, borrow from theory of quantum paramagnetism – Find M(x) by plotting these two functions! MM/ s tanhx M/ Ms tanh x 1 kTB M/ Ms x Happlied nv B B 0 Happlied nvB Ferromagnetism • Curie-Weiss law – Weiss internal field, Weiss exchange field, Weiss molecular field – Again, borrow from theory of quantum paramagnetism MM/ s Ferromagnetism • Curie-Weiss law – Curie temperature of various ferromagnetic materials .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    48 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us