More Linear Algebra1

More Linear Algebra1

More Linear Algebra1 Chris Godsil Combinatorics & Optimization University of Waterloo ©2019 1version: January 29, 2021 ii Preface These notes are meant to provide an introduction to fundamental parts of lin- ear algebra, as might be applied to problems in combinatorics. I assume the reader has had a first course in linear algebra, and is familiar with determinants. iii To Do 1. Interlacing, via Courant-Fischer and by rational functions. Need equi- table partitions for this. 2. Walk modules. Controllable graphs. 3. Quadrics. 4. Matrix exponential. 5. Lie algebras, sl(2) repns. 6. Perron-Frobenius, symbolic dynamics. 7. Perturbation theory. iv Contents 1 Spaces and Subspaces 1 1.1 Vector Spaces . 1 1.2 Subspaces . 3 1.3 Linear Mappings . 4 1.4 Duals and Adjoints . 6 1.5 Bilinear Forms . 8 1.6 Counting . 9 1.7 Normal Forms . 11 1.8 Groebner Bases . 13 1.9 Codes . 15 2 Primary Decomposition 19 2.1 Modules . 19 2.2 Control Theory . 20 2.3 Sums .................................... 22 2.4 Invariant Sums . 23 2.5 Minimal Polynomials . 25 2.6 Primary Decomposition . 27 2.7 The Degree of the Minimal Polynomial . 29 2.8 Root Spaces . 30 2.9 Examples of Root Spaces . 31 2.10 Differential Equations . 33 2.11 Linear Recurrence Equations . 35 2.12 Diagonalizability . 36 3 Frobenius Normal Form 39 3.1 Companion Matrices . 39 3.2 Transposes . 41 v vi CONTENTS 3.3 Eigenvectors for Companion Matrices . 42 3.4 Inverses of Companion Matrices . 44 3.5 Cycles.................................... 46 3.6 Circulants and Cyclic Codes . 47 3.7 Frobenius Normal Form . 49 3.8 Applications . 52 3.9 Nilpotent Matrices . 53 3.10 A Similarity Condition . 55 3.11 Triangular Maps . 57 3.12 Triangulations . 59 3.13 The “Fundamental” “Theorem of Algebra” . 59 3.14 The Kronecker Product . 63 4 Orthogonality 67 4.1 Properties of Projections . 67 4.2 Matrices Representing Projections . 68 4.3 Least Squares . 70 4.4 Orthogonal Polynomials . 71 4.5 The Three-Term Recurrence . 72 4.6 Numerical Integration . 73 5 Eigenthings 77 5.1 Self-Adjoint Operators . 77 5.2 Diagonalizability . 78 5.3 Diagonalizability, Again . 79 5.4 Eigenvectors and Optimization . 80 5.5 The Singular Value Decomposition . 81 5.6 Least Squares . 83 5.7 Legendre Polynomials . 85 5.8 Computing Eigenvalues . 87 5.9 Jacobi: An Example . 89 6 Spectral Decomposition 91 6.1 Self-Adjoint Operators . 91 6.2 Commutative Algebras . 92 6.3 Normal Operators . 94 CONTENTS vii 7 Norms 97 7.1 Convexity . 97 7.2 Extreme Points . 99 7.3 Norms . 100 7.4 Dual Norms . 102 7.5 Matrix Norms . 103 7.6 Examples . 105 7.7 Matrix Functions . 106 7.8 Powers ................................... 108 7.9 Contractions . 110 7.10 Projections . 112 7.11 Contractions . 114 7.12 Perron . 116 8 Geometry 121 8.1 Semilinear Forms . 121 8.2 The Classification of Forms . 122 8.3 Gram Matrices . 123 8.4 Equiangular Lines . 124 8.5 Tight Frames . 125 8.6 Another Gram Matrix . 126 8.7 The Orthogonal Group . 127 8.8 Skew-Symmetric to Orthogonal . 128 8.9 Reflections . 129 9 Positive Semidefinite Matrices 133 9.1 Factorizing Positive Semidefinite Matrices . 133 9.2 Computing Cholesky . 135 9.3 Polynomial Examples . 136 9.4 Positive Semidefinite Matrices . 138 10 Tensors 141 10.1 Tensor Products . 141 10.2 Quadratic Tensors . 142 10.3 Cubic Tensors . 144 10.4 Multiplication . 146 10.5 Semifields . 147 viii CONTENTS 11 Control 149 11.1 Buffalos . 149 11.2 Burgers . 151 11.3 Controllability . 152 11.4 Observability . 155 11.5 Feedback and Controllability . 156 11.6 Canonical Forms . 158 11.7 Eigenvalues and Controllability . 159 11.8 Observers . 161 11.9 Transfer Matrices . 162 12 The Smith Normal Form 165 12.1 Domains . 165 12.2 Localization . 167 12.3 Fitting . 168 12.4 Hermite . 169 12.5 Smith Normal Form . 171 13 Polynomial and Rational Matrices 175 13.1 Series . 176 13.2 Polynomial Matrices . 177 13.3 Paraunitary Matrices . 180 13.4 Division . 182 13.5 Cayley-Hamilton . 183 13.6 Greatest Common Divisors . 185 13.7 An Identity . 187 13.8 Resolvents . 189 14 Determinants 195 14.1 Permutations . 195 14.2 The Sign of a Permutation . 197 14.3 Permutation Matrices . 198 14.4 Definition of the Determinant . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    230 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us