CHAPTER 9 MULTILINEAR ALGEBRA in This Chapter We Study

CHAPTER 9 MULTILINEAR ALGEBRA in This Chapter We Study

CHAPTER 9 MULTILINEAR ALGEBRA In this chapter we study multilinear algebra, functions of several variables that are linear in each variable separately. Multilinear algebra is a generalization of linear algebra since a linear function is also multilinear in one variable. If V1; V2; · · · ; Vk and W are vector spaces, then we wish to understand what are all the multilinear maps g : V1 × V2 × · · · × Vk ! W and notation to systematically express them. This may seem like a difficult and involved problem. After all the reader has probably taken considerable effort to learn linear algebra and multilinear algebra must be more complicated. The method employed is to convert g into a linear map g~ on a different vector space, a vector space called the tensor product of V1; V2; · · · ; Vk. Since g~ is a linear map on a vector space, we are now in the realm of linear algebra again. The benefit is that we know about linear maps and how to represent all of them. The cost is that the new space is a complicated space. Definition 9.1***. Suppose V1; V2; · · · ; Vk and W are vector spaces. A function f : V1 × V2 × · · · × Vk ! W is called multilinear if it is linear in each of its variables, i.e., 0 f(v1; · · · ; vi−1;avi + bvi; vi+1; · · · ; vk) 0 = af(v1; · · · ; vi−1; vi; vi+1; · · · ; vk) + bf(v1; · · · ; vi−1; vi; vi+1; · · · ; vk) 0 for all a; b 2 R, vj 2 Vj for j = 1; · · · ; k and vi 2 Vi for i = 1; · · · ; k. Our objective is to reduce the study of multilinear maps to the study of linear maps. We use F (V1; V2; · · · ; Vk) to denote the vector space having its basis f(v1; · · · ; vk) 2 V1 × · · · × Vkg = V1 × · · · × Vk. Each element of V1 × · · · × Vk is a basis element of F (V1; V2; · · · ; Vk). For example, if V = R, then F (V ) is an infinite dimesional vector space in which each r 2 R is a basis element. This vector space is enormous, but it is just an intermediate stage. It has the following important property: Lemma 9.2***. If V1; V2; · · · ; Vk and W are vector spaces, then linear maps from F (V1; V2; · · · ; Vk) to W are in one to one correspondence with set maps from V1 × · · · × Vk to W . Proof. This property follows since a linear map is exactly given by specifying where a basis should map, and V1 × · · · × Vk is a basis of F (V1; V2; · · · ; Vk). Given any set map g : V1 × · · · × Vk ! W we obtain a linear map g~ : F (V1; V2; · · · ; Vk) ! W . We next improve upon the construction of F by forming a quotient of F to make a smaller space. We can do this improvement since we are not interested in set maps from copyright c 2002 Larry Smolinsky Typeset by AMS-TEX 1 2 CHAPTER 9 MULTILINEAR ALGEBRA V1 × · · · × Vk to W but only in multilinear maps. Let R ⊂ F be the vector subspace of F spanned by the following vectors 0 (v1; · · · ; vi−1;avi + bvi; vi+1; · · · ; vk) (1***) 0 − a(v1; · · · ; vi−1; vi; vi+1; · · · ; vk) − b(v1; · · · ; vi−1; vi; vi+1; · · · ; vk) 0 for each a; b 2 R, vj 2 Vj for j = 1; · · · ; k and vi 2 Vi for i = 1; · · · ; k. The vector given in (1)*** is a single vector expressed as a sum of three basis elements, and each basis element is an n-tuple in V1 × · · · × Vk. The subspace R has the following important property Lemma 9.3***. If V1; V2; · · · ; Vk and W are vector spaces, then linear maps from F (V1; V2; · · · ; Vk) to W which vanish on R are in one to one correspondence with multilinear maps from V1 × · · · × Vk to W . Proof. The correspondence is the same correspondence as is given in Lemma 9.2***. Using the same notation as in the proof of Lemma 9.2***, we must show that g is multilinear if and only if g~ vanishes on R. Suppose g : V1 × · · · × Vk ! W is a multilinear map. Then 0 g(v1; · · · ; vi−1;avi + bvi; vi+1; · · · ; vk) 0 = ag(v1; · · · ; vi−1; vi; vi+1; · · · ; vk) + bg(v1; · · · ; vi−1; vi; vi+1; · · · ; vk) which is true if and only if ~ 0 g~(v1; · · · ; vi−1;avi + bvi; vi+1; · · · ; vk) ~ ~ 0 = ag~(v1; · · · ; vi−1; vi; vi+1; · · · ; vk) + bg~(v1; · · · ; vi−1; vi; vi+1; · · · ; vk) ~ ~ 0 = g~(a(v1; · · · ; vi−1; vi; vi+1; · · · ; vk)) + g~(b(v1; · · · ; vi−1; vi; vi+1; · · · ; vk)) which is true if and only if ~ 0 g~((v1; · · · ; vi−1;avi + bvi; vi+1; · · · ; vk) 0 − a(v1; · · · ; vi−1; vi; vi+1; · · · ; vk) − b(v1; · · · ; vi−1; vi; vi+1; · · · ; vk)) = 0: In the computation above, g~ is a linear map and each n-tuple is a basis vector in the vector space. The last line states that g~ vanishes on R and the first line states that g is multilinear. Hence g is multilinear if and only if g~ vanishes on R. We are now ready to define the vector space discussed in the beginning of the chapter. Definition 9.4***. Suppose that V1; V2; · · · ; Vk are vector spaces. Then the vector space F (V1; · · · ; Vk)=R along with the map φ : V1 × · · · × Vk ! F (V1; · · · ; Vk)=R is call the tensor product of V1; V2; · · · ; Vk. The vector space F=R is denoted V1 ⊗ · · · ⊗ Vk. The image φ((v1; · · · ; vk)) is denoted v1 ⊗ · · · ⊗ vk. Usually the map φ is supressed, but it is understood to be present. Usually the map φ is suppressed, but it is understood to be present. Although the vector space F is infinite dimensional, we will soon show that V1 ⊗ · · · ⊗ Vk is finite dimensional (Proposition 9.8***). We first show that CHAPTER 9 MULTILINEAR ALGEBRA 3 Proposition 9.5***. The map φ in the definition of the tensor product is a multilinear map. Proof. We must show that 0 φ(v1; · · · ; vi−1;avi + bvi; vi+1; · · · vk) 0 = aφ(v1; · · · ; vi−1; vi; vi+1; · · · vk) + bφ(v1; · · · ; vi−1; vi; vi+1; · · · vk) or, using the notation of Definition 9.4***, 0 (v1 ⊗ · · · ⊗ vi−1⊗avi + bvi ⊗ vi+1 ⊗ · · · ⊗ vk) − a(v1 ⊗ · · · ⊗ vi−1 ⊗ vi ⊗ vi+1 · · · ⊗ vk) 0 − b(v1 ⊗ · · · ⊗ vi−1 ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vk) = 0 This equation is equivalent to the following statement in F , 0 (v1; · · · ; vi−1;avi + bvi; vi+1; · · · vk) 0 − a(v1; · · · ; vi−1; vi; vi+1; · · · vk) − b(v1; · · · ; vi−1; vi; vi+1; · · · vk) 2 R The vector on the left is in R since it is the element in expression (1)***. The main property of the tensor product is the universal mapping property for multi- linear maps. It is stated in the following theorem. Proposition 9.6***. Suppose V1; V2; · · · ; Vk are vector spaces. The tensor product φ : V1 ×· · ·×Vk ! V1 ⊗· · ·⊗Vk satisfies the following property, the universal mapping property for multilinear maps: If W is a vector space and g : V1 × · · · × Vk ! W is a multilinear map, then there is a unique linear map g~ : V1 ⊗ · · · ⊗ Vk ! W such that g~ ◦ φ = g. Proof. Given the multilinear map g, there is a unique linear map g~ : F (V1; · · · ; Vk) ! W by Lemma 9.2***. Since g is multilinear, the map g~ vanishes on R by Lemma 9.3***. Hence there is a unique well-defined map induce by g~, call it g~ : F=R ! W . The ability of the tensor product to convert multilinear maps into linear maps is an immediate consequence of Proposition 9.6***. Theorem 9.7***. Suppose V1; V2; · · · ; Vk and W are vector spaces. Linear maps g~ : V1 ⊗ · · ·⊗Vk ! W are in one to one correspondence with multilinear maps g : V1×· · ·×Vk ! W . Proof. Given a multilinear map g, Proposition 9.6*** produces the unique linear map g~. Given a linear map g~ let g = g~ ◦ φ. The map g is a composition of a linear map and a multilinear map, Proposition 9.5***. The composition of a linear map and a multilinear map is a multilinear linear map. The reader should check this fact. 4 CHAPTER 9 MULTILINEAR ALGEBRA i Theorem 9.8***. Suppose V1; V2; · · · ; Vk are vector spaces and dimVi = ni. Let fej j j = 1 2 k 1; · · · ; nig be a basis for Vi. Then dimV1 ⊗ · · ·⊗ Vk = n1n2 · · · nk and fej1 ⊗ ej2 ⊗ · · ·⊗ ejk j ji = 1; · · · ; ni; i = 1; · · · ; kg is a basis for the tensor product V1 ⊗ · · · ⊗ Vk. Proof. We first show that dimV1 ⊗ · · · ⊗ Vk ≥ n1n2 · · · nk. Let W be the vector space of dimension n1n2 · · · nk and label a basis Ej1;··· ;jk for ji = 1; · · · ; nk. Define L : V1 × · · · × Vk ! W by n1 nk n1 nk 1 k L( a1j1 ej1 ; · · · ; akjk ejk ) = · · · a1j1 · · · akjk Ej1;··· ;jk jX1=1 jXk=1 jX1=1 jXk=1 1 k The map L maps onto a basis of W since L(ej1 ; · · · ; ejk ) = Ej1;··· ;jk . We next observe that L is multilinear. Let v = nr a er for r = 1; · · · ; k and r jr =1 rjr jr v0 = ni a0 ei so that av + bv0 = ni (aa + baP0 )ei and i ji=1 iji ji i i ji=1 iji iji ji P P 0 L(v1; · · · ; vi−1; avi + bvi; vi+1 · · · ; vk) n1 nk 0 = · · · aij1 · · · ai−1ji−1 (aaiji + baiji )ai+1ji+1 · · · akjk Ej1;··· ;jk jX1=1 jXk=1 n1 nk = a · · · aij1 · · · ai−1ji−1 (aiji )ai+1ji+1 · · · akjk Ej1;··· ;jk jX1=1 jXk=1 n1 nk 0 + b · · · aij1 · · · ai−1ji−1 (aiji )ai+1ji+1 · · · akjk Ej1;··· ;jk jX1=1 jXk=1 0 = aL(v1; · · · ; vi−1; vi; vi+1 · · · ; vk) + bL(v1; · · · ; vi−1; vi; vi+1 · · · ; vk) By Proposition 9.6***, there is an induced linear map L~ : V1 ⊗ · · · ⊗ Vk ! W .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us