© Copyright 2016 Devon R. Mortensen

© Copyright 2016 Devon R. Mortensen

© Copyright 2016 Devon R. Mortensen Understanding near Fermi-level electronic structure through x-ray emission spectroscopy Devon R. Mortensen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Gerald T. Seidler, Chair Marjorie Olmstead Xiaodong Xu Program Authorized to Offer Degree: Physics University of Washington Abstract Understanding near Fermi-level electronic structure through x-ray emission spectroscopy Devon R. Mortensen Chair of the Supervisory Committee: Professor Gerald T. Seidler Physics Atomic and molecular chemical properties are largely determined by the electronic structure of near Fermi-level states. Determining this structure is therefore one of the central tasks in materials characterization and development. In the work of this dissertation I explore the capabilities and limitations of non-resonant x-ray emission spectroscopy (NXES) as an analytical technique aimed at addressing these issues. To this end, I report the development of novel laboratory- and synchrotron-based instrumentation for the study of transition metal and lanthanide compounds. One of the primary results of this research thrust is increased accessibility and throughput, making NXES measurements a more viable option in routine and research-grade materials study. Using experimental data obtained from these spectrometers, I evaluate current state-of-the-art theory in terms of modeling valence structure in ambient transition-metal complexes. Additionally, I use NXES to elucidate the evolving 4f-electronic structure in the early light lanthanides under pressure. In particular these results show a persistent 4f-moment across certain volume collapse transitions in Cerium and Praseodymium, thus helping settle a long-standing debate about the nature of volume collapse. TABLE OF CONTENTS List of Figures ................................................................................................................................ xi List of Tables ............................................................................................................................... xxi Chapter 1. Introduction ................................................................................................................... 1 1.1 Outline of dissertation ..................................................................................................... 1 1.2 Overview of x-ray spectroscopy ..................................................................................... 2 1.3 X-ray Absorption Fine Structure .................................................................................... 3 1.3.1 X-ray Absorption Near Edge Structure....................................................................... 5 1.3.2 Extended X-ray Absorption Fine Structure ................................................................ 6 1.4 Non-resonant X-ray Emission Spectroscopy .................................................................. 6 1.4.1 Kα emission ................................................................................................................ 8 1.4.2 Kβ emission ................................................................................................................ 8 1.4.3 Valence-to-core emission............................................................................................ 9 Chapter 2. Survey of instrumentation ........................................................................................... 11 2.1 Background ................................................................................................................... 11 2.1.1 Bragg diffraction ....................................................................................................... 12 2.1.2 Curved crystals.......................................................................................................... 13 2.2 Focusing crystal spectrometers ..................................................................................... 14 2.2.1 The Rowland circle ................................................................................................... 14 2.2.2 Bragg geometries ...................................................................................................... 15 2.2.3 Laue geometries ........................................................................................................ 17 vi 2.3 Dispersive crystal spectrometers................................................................................... 19 2.3.1 von Hamos geometry ................................................................................................ 19 2.3.2 Off-circle Bragg geometry ........................................................................................ 20 2.3.3 Dispersive Laue geometry ........................................................................................ 21 2.4 Synchrotron implementations ....................................................................................... 23 2.4.1 Multi-analyzer Rowland spectrometers .................................................................... 23 2.4.2 A miniature von Hamos spectrometer ...................................................................... 25 2.5 Laboratory implementations ......................................................................................... 26 2.5.1 A conventional von Hamos spectrometer ................................................................. 27 2.5.2 A novel von Hamos spectrometer ............................................................................. 28 2.5.3 A DuMond-type Laue spectrometer ........................................................................ 30 2.5.4 A dispersive Laue EXAFS spectrometer .................................................................. 32 Chapter 3. Valence-to-core x-ray emission spectroscopy ............................................................. 34 3.1 Background ................................................................................................................... 34 3.2 Recent applications ....................................................................................................... 36 3.2.1 Catalysis .................................................................................................................... 36 3.2.2 Environmental science .............................................................................................. 40 3.3 Theory ........................................................................................................................... 42 Chapter 4. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure ................................................................ 46 4.1 Introduction ................................................................................................................... 47 4.2 Prior work in laboratory-based x-ray spectroscopy ...................................................... 50 vii 4.2.1 X-ray Absorption Fine Structure .............................................................................. 50 4.2.2 X-ray Emission Spectroscopy ................................................................................... 53 4.3 Monochromator Design ................................................................................................ 54 4.4 Results and Discussion ................................................................................................. 65 4.4.1 Laboratory XANES .................................................................................................. 65 4.4.2 Laboratory Nonresonant XES ................................................................................... 70 4.5 Conclusions ................................................................................................................... 75 Chapter 5. Benchtop nonresonant x-ray emission spectroscopy .................................................. 77 5.1 Introduction ................................................................................................................... 77 5.2 Experimental Details ..................................................................................................... 78 5.3 Results and Discussion ................................................................................................. 81 5.4 Conclusion .................................................................................................................... 83 Chapter 6. Robust optic alignment in a tilt-free implementation of the Rowland circle spectrometer .................................................................................................................................. 85 6.1 Introduction ................................................................................................................... 86 6.2 Compensating for wafer miscut in SBCA alignment ................................................... 87 6.3 Symmetric Rowland configuration ............................................................................... 90 6.4 Asymmetric Rowland configuration ............................................................................. 94 6.5 The effect of wafer miscut on SBCA performance .................................................... 100 6.6 Conclusion .................................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    211 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us