(Tev) Observations of Pulsar Wind Nebulae and Supernova Remnants

(Tev) Observations of Pulsar Wind Nebulae and Supernova Remnants

Very-High-Energy (TeV) Observations of Pulsar Wind Nebulae and Supernova Remnants Nukri Komin University of the Witwatersrand Johannesburg, South Africa Nukri Komin 9th International Fermi Symposium (2021) 1 PWNe and SNRs in a Nutshell possible binary systems black holes supernova explosion isolated neutron stars of massive star rotating neutron star core contraction → pulsar rotation driven 28 38 e surrounded by electron wind Ė 10 ...10 erg/s xp (C) A Hitchhikers Gui an → pulsar wind nebula de to Space and Pla si sma Physics on o f o ut er composites la ye rs kinetic SN energy warf explosion supernova type Ia white d supernova remnant ~1051 erg Nukri Komin 9th International Fermi Symposium (2021) 2 TeV Instruments ➲ ground based observations of atmospheric showers ➲ Imaging Air Cherenkov Telescopes → Cherenkov light in air → small field of view, low-duty cycle → detailed studies of individual sources → H.E.S.S., MAGIC, VERITAS ➲ Extensive Air Shower Arrays → direct detection of shower particles → large field of view, large duty cycle → population studies, large sources → Cherenkov light in water tanks (HAWC) → scintillation counters (Tibet Air Shower Array) Nukri Komin 9th International Fermi Symposium (2021) 3 Hubble (NASA/ESA) Crab Nebula: TeV Observation Timeline ➲ 1989, Whipple [Weekes et al. 1989 ApJ v.342, p.379] → 9σ detection, >0.7 TeV ➲ 1996, HEGRA [HEGRA Collaboration 1996 APh v. 4-3, p. 199-215] H.E.S.S. 2006 → 10σ detection, 1-3 TeV, power law spectrum ➲ 2003, Milagro [Atkins et al. ApJ v. 595, Issue 2, pp. 803-811] → 3 6.4σ, 4 TeV median energy 186 MAGIC >25 GeV ➲ 2006, H.E.S.S. [H.E.S.S. Collaboration, A&A, v. 457-3, pp.899-915] 185 → ~100σ, 440 GeV – 40 TeV, spectral cut-off 184 ➲ 2008, MAGIC [MAGIC Collaboration, ApJ v. 674-2, p. 1037-1055] 183 -1 -0.5 0.501 → 60 GeV – 9 TeV, curved power law Phase ➲ pulsed emission → 2008, MAGIC [MAGIC Collaboration, Science, Volume 322, Issue 5905, pp. 1221] → 2011, VERITAS [VERITAS Collaboration, Science 334: 69] ➲ > 100 TeV photons → 2019, Tibet [Amenomori et al. PhysRevL, v. 123, Issue 5, id.051101] → 2019, HAWC [HAWC Collaboration ApJ, Volume 881, Issue 2, article id. 134] ➲ 2020, H.E.S.S. [H.E.S.S. Collaboration, NatAs Volume 4, p. 167-173] → extension ➲ many other publications and instruments (CTA prototypes, ...) [MAGIC, JHEAp, Volume 5, p. 30-38.] Nukri Komin 9th International Fermi Symposium (2021) 4 Crab Nebula ➲ PSR B0531+21 → P = 33.4 ms, Ṗ =4.2×10-13, Ė = 4.5×1038 erg/s, age ~1000 years → d = 2 kpc [MAGIC, JHEAp, Volume 5, p. 30-38.] ➲ gamma-ray luminosity → 50 GeV – 30 TeV → 1035 erg/s (0.02% Ė) ➲ Why is it so bright in TeV? → 2nd most luminous pulsar → point-like source ● X-ray extension 50’’ (0.5 pc) → strong synchrotron emission → SSC Nukri Komin 9th International Fermi Symposium (2021) 5 Crab Nebula with H.E.S.S. ➲ [HESS 2020, Nat. Astron,, v, 4, p. 167-173] ➲ increase angular resolution → simulate detector response on run-by-run basis → account for detector problems, night-sky-background, ... → 0.05° (68% containment) X C M h ➲ a 1.0 - 3.0 TeV Electrons Crab extension 52’’ (1σ of Gaussian) a M n d U 3.0 - 10.0 TeV Electrons r a −7 V 10 W 10.0 - 30.0 TeV Electrons H 1 . → E smaller than in UV . S . S ) −8 . 1 10 − → significantly larger than in X-rays s 2 − −9 m 10 c ➲ g H.E.S.S. probes electron energies r e −10 ( 10 ν that are not well observed in F synchrotron emission ν 10−11 10−12 10−7 10−4 10−1 102 105 108 1011 1014 Energ (eV) Nukri Komin 9th International Fermi Symposium (2021) 6 HESS J1825–137 ➲ [HESS 2019, A&A 621, A116] ➲ PSR B1823–13 → Ė = 2.8×1036 erg/s, age 21 kyrs → d ~ 4 kpc ➲ PWN at TeV → ~0.8° (~56 pc) ● larger than X-ray nebula (15’) [Uchiyama et al., PASJ 2009, v.61, pp.S189] ● larger than 1-100GeV nebula (0.56°) [Grondin et al 2011 ApJ 738 42] → L = 3.1×1035 erg/s = 11% Ė Nukri Komin 9th International Fermi Symposium (2021) 7 HESS J1825–137 ➲ energy dependent morphology → highest energy electrons do not travel too far away from pulsar → >16 TeV photons come only from X-ray nebula Table 3. Extent measurements as a function of energy for analyses A and B, with statistical and systematic errors. Energy range Extent (A) Extent (B) <1 ! "e# $ %.37◦ ±%.15◦ ±%.3◦ 1 !− !% "e# $ %.63◦ ±%.%&◦ ±%.%&◦ < !% "e# %.''◦ ±%.%(◦ ±%.3◦ $ !%−!%% "e# %.&'◦ ±%.03◦ ±%. ◦ %.71◦ ±%.%)◦ ±%.01◦ !%% "e#−1 Te# %.& ◦ ±%.% ◦ ±%.%!◦ %.& ◦ ±%.%!◦ ±%. ◦ 1− Te# %.'(◦ ±%.% ◦ ±%.11◦ %.' ◦ ±%.%&◦ ±%.(◦ −( Te# %.(&◦ ±%.%(◦ ±%.%*◦ %.51◦ ±%.%!◦ ±%.1◦ (−* Te# %.38◦ ±%.%(◦ ±%.13◦ %.33◦ ±%.%&◦ ±%.%(◦ *−16 Te# %. &◦ ±%.%&◦ ±%.%'◦ %.30◦ ±%.12◦ ±%.3◦ >16 Te# $ %. ◦ ±%.12◦ ±%. ◦ 16−32 Te# %.19◦ ±%.%*◦ ±%.14◦ $ X-ray nebula >32 Te# %.14◦ ±%.1◦ ±%.%!◦ $ Nukri Komin 9th International Fermi Symposium (2021) 8 Particle Transport in HESS J1825–137 ) o ➲ energy dependent diffusion ( ! t n e → size would increase with energy t 1 $ E ! l a ➲ diffusion and cooling # d a → maximum extend at energy where cooling " time meets age ● Ee = 4 TeV, B ≈12 μG (BX-rays ≈5 μG) → nebula becomes smaller with energy ➲ advection So%th!& South!' → nebula confined by ISM δ 10-1 EDGE (0 → nebula even smaller than for diffusion EDGE δ(1 Fit!&nal sis & ➲ energy-dependent morphology allows F#t!&nal sis B )#+%s#on the study of the particle transport Advection → more prominent at larger distance from 10-1 1 10 pulsar Energy!TeV Nukri Komin 9th International Fermi Symposium (2021) 9 TeV J2032+4130 VERITAS ➲ first unidentified and extended TeV source → HEGRA [A&A, v.431, p.197-202 (2005)] → Whipple [A&A, v.423, p.415-419 (2004)] → MAGIC [ApJL, Volume 675, Issue 1, pp. L25 (2008)] → VERITAS [ApJ, Volume 783, Issue 1, article id. 16, 9 pp. (2014)] ➲ PSR J2032+4127 → Ė = 1.5×1035 erg/s, age 2×105 years, distance 1.3 kpc ➲ nebula → TeV extension 9.5’ × 4.0’ (3.6 pc × 1.5 pc), L ~ 0.3% Ė → X-ray extension 12’ → good PWN candidate ➲ binary system on 50-years orbit → detected at periastron by VERITAS and MAGIC ● [ApJL, Volume 867, Issue 1, article id. L19, 8 pp. (2018)] → orbit < 200 AU MAGIC → binary system inside a PWN (?) Nukri Komin 9th International Fermi Symposium (2021) 10 TeV PWN Population 20 PSRs > 1034 erg/s/kpc 2 Randomised PSRs > 1034 erg/s/kpc 2 15 N 10 5 ➲ PWN in the H.E.S.S. Galactic Plane Survey 0 0.0 0.5 1.0 1.5 2.0 → [A&A, Volume 612, id.A2, 25] Squared Angular Distance PSR-TeV [deg 2] 28 34 2 → 140 PSRs 10 - 10 erg/s/kpc correlation between pulsar and TeV emission Randomised PSRs 1028 - 1034 erg/s/kpc 2 for Ė/d2 > 1034 erg/s/kpc2 120 100 80 → 14 firmly identified PWN N 60 → 18 PWN candidates 40 20 0 0.0 0.5 1.0 1.5 2.0 Squared Angular Distance PSR-TeV [deg 2] Nukri Komin 9th International Fermi Symposium (2021) 11 TeV PWN Population r yr ky ➲ -11 1 k 0 young, high-Ė pulsars 10 Kes 75 1 MSH 15-52 yr ➲ exception -12 0 k 10 10 Crab Nebula CTA 1 → PSR B1742−30 3C 58 r ] Vela X ky 1 -13 00 − 10 J1825-137 10 33 s N157B ● Ė = 8.5×10 erg/s s [ ● 5 e τ = 5.5×10 years t -14 s a 10 / g R r e ● 9 d = 200 pc n 3 0 w 1 o -15 → d 10 2 candidate TeV sources - n i ● p very small: 0.2°, 0.06° S -16 /s 10 g r ● e unlikely PWN candidates 7 3 Firm identifications 0 1 -17 Candidate PWNe 10 /s /s g g PWNe outside HGPS r r e e 5 3 3 3 ATNF pulsars 0 0 10 -18 1 1 10 -2 10 -1 10 0 10 1 Period [s] Nukri Komin 9th International Fermi Symposium (2021) 12 TeV PWN Population 10 2 ➲ efficiency: Firm identifications 10 1 Candidate PWNe PWNe outside HGPS Lim its → 0 Ė of pulsar at present time 10 Varied Model ˙ E / V Baseline Model → e L1-10TeV from electrons injected over T -1 0 1 10 − J1825-137 life time of pulsar 1 L y -2 c 10 ➲ efficiency grows with age n e MSH 15-52 i c i N157B CTA 1 f f -3 Kes 75 e 10 V e T -4 Vela X 10 Crab Nebula 10 -5 3C 58 10 -6 10 0 10 1 10 2 Characteristic age τc [kyr] Nukri Komin 9th International Fermi Symposium (2021) 13 TeV PWN Population ➲ offset of pulsar from TeV 10 2 emission centroid J1825-137 ➲ increases with age N157B 10 1 ] → proper motion of pulsar c MSH 15-52 CTA 1 p [ t Kes 75 3C 58 Vela X → e inhomogeneous medium leads to s f f o 0 asymmetric (“crushed”) PWN 10 r Crab Nebula a s l u P Firm identifications Candidate PWNe -1 10 PWNe outside HGPS Min. offset (0.0056 deg) at 5.1 kpc Max. offset (0.5 deg) at 5.1 kpc 500 km /s 10 -2 10 0 10 1 10 2 Characteristic age τc [kyr] Nukri Komin 9th International Fermi Symposium (2021) 14 TeV PWN Population Firm identifications 10 3 ➲ extension of nebula Candidate PWNe PWNe outside HGPS increases with age Varied Model Baseline Model ] c p 2 N157B [ 10 N W P R J1825-137 n o i s n e MSH 15-52 t 1 x 10 e CTA 1 V 3C 58 e Crab Nebula T Kes 75 Vela X on teracti hock in n rse s o reve si n a 0 p 10 x e e e fr 10 0 10 1 10 2 Characteristic age τc [kyr] Nukri Komin 9th International Fermi Symposium (2021) 15 Composite Supernova Remnants ➲ radio/X-rays: PWN and SNR shell visible ➲ HESS J1554–550 → pulsar not identified Chandra X-rays → TeV emission smaller then shall [Temim et al., ApJ 2015, 808, 100] → most likely PWN emission ➲ HESS J1119–614 → PSR J1119−6127, Ė = 2.3×1036 erg/s → d = 8.4 ± 0.4 kpc → emission from PWN or shell? Nukri Komin 9th International Fermi Symposium (2021) 16 Supernova Remnants and Cosmic Rays up to 1015 eV ➲ Are SNRs the sources of Galactic CRs (protons) up to 1015 eV? → is the emission hadronic? → what is the cut-off of the spectrum? AB IC 443 W44 10-10 10-10 ) ) 1 1 - - s s / / - - m m c c ! ! g g r -11 r -111 e 10 e 10 ( ( ! ! E E d d 1 1 0 0 d Best-fit!3ro4en!5o6er la6 d / / Best-fit!3ro4en!5o6er la6 Ferm#-7&T E VE"8T&S!( ) E Ferm#-7&T -1/ M&*8C!( ) -1/ &*87E!( ) 10 &*87E!( ) 10 π0-deca π0-deca Bremsstrahl%ng Bremsstrahl%ng Bremsstrahl%ng!6#th!'rea4 Bremsstrahl%ng!6#th!Brea4 10- 10.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us