How Far to a Star ? Astronomical Distances Astronomical Distances

How Far to a Star ? Astronomical Distances Astronomical Distances

How far to a Star ? Astronomical Distances • distance = speed x time - Fundamental problem ….. • light speed c = 3 ´ 10 5 km/s - How far away is a point of light ? • 0.002 s Edinburgh-St.Andrews . Is it a 100-watt light bulb ? • 0.1 s Earth circumference . A star as bright as the Sun ? . A galaxy of 10 11 stars ? • 1.2 s Earth-Moon distance - Brightness alone is not enough. • 8 min Sun-Earth - How to measure astronomical distances ? • 40 min Jupiter • 5 hr Pluto Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 Stars & Elementary Astrophysics: Introduction Press F1 for Help 2 Astronomical Distances Parallax • 4.3 yr nearest star (Proxima Centauri) geometrical method • 25,000 yr centre of our Milky Way Galaxy p = parallax angle • nearest big galaxy a = 1 Astronomical Unit 2 6 yr (1 AU) = radius of Earth’s . ´ 10 (Andromeda, Messier 31, M31) orbit around the Sun. • nearest cluster of galaxies 5´10 7 yr . (Virgo cluster) p a = d tan p • 10 edge of visible part of Universe » 10 yr d a » d p (small angle p) . (The Big Bang) a d » p Stars & Elementary Astrophysics: Introduction Press F1 for Help 3 Stars & Elementary Astrophysics: Introduction Press F1 for Help 4 a The Parsec -new distance unit Stellar Parallaxes are tiny Example: p a 1 arcsec ( 1") d p = = • Bessel (1838) First parallax: a 1 AU 3600 " 180 ° 61 Cygni p = 0.29 arcsec Þ d = = ´ ´ p 1" 1° p radian d = 1/0.29 = 3.42 pc • also in 1838: Henderson (á Centauri) = 206265 AU Fast Method: . Struve (Vega) 16 = 3.1´10 m • The nearest star (beyond the Sun) d = 1/p = 3.26 light yr Proxima Centauri p = 0².76 , d = 1.31 pc. For p in arcsec = 1 parsec (1 pc) and d in parsec Stars & Elementary Astrophysics: Introduction Press F1 for Help 5 Stars & Elementary Astrophysics: Introduction Press F1 for Help 6 Limits of Parallax The Distance Ladder • Different methods • Ground-based CCDs 0.05” 20 pc • for different supernovae • Hubble Telescope 0.01” 100 pc • distances • Hipparcos (all sky) 0.005” 200 pc • cepheid variables Today: Nearby Stars Only • stars • 2015: GAIA (whole galaxy) 10,000 pc • PARALLAX IS THE FOUNDATION FOR ALL OTHER METHODS Stars & Elementary Astrophysics: Introduction Press F1 for Help 7 Stars & Elementary Astrophysics: Introduction Press F1 for Help 8 Inverse Square Law Luminosity, Flux energy Luminosity L = time Units: Joule / sec = Watt (e.g. 100 W light bulb) Solar luminosity: 26 L sun = 3.8´10 W energy Flux F = time´ area Units: Watts / square metre 2 Sun viewed from Earth: F sun = 1380 W/m Stars & Elementary Astrophysics: Introduction Press F1 for Help 9 Stars & Elementary Astrophysics: Introduction Press F1 for Help 10 Inverse Square Law http://concam.net Continuous sky images. fish-eye lens + CCD. d area of sphere = 4p 2 d 7 observatories L Sky from Australia: Magellenic Clouds L F = 2 Flux viewed from distance d : 4pd Milky Way centre Stars & Elementary Astrophysics: Introduction Press F1 for Help 11 Stars & Elementary Astrophysics: Introduction Press F1 for Help 12 Magnitudes Apparent Magnitude • Hipparcos (2nd century BC) (measures apparent brightness) stars visible by eye: • Pogson (1856) 1st mag = brightest . apparent magnitude: 6th mag = faintest • Herschel (1780s) 1st mag stars are m = -2.5log( F / F 0) 100 times brighter than 6th mag stars. -(m /2.5) F = F 0 ´10 • 1800s -- eye responds to flux ratios true flux 1 : 10 : 100 F 0 = flux of 0 mag star (Vega) perceived 1 : 2 : 3 Stars & Elementary Astrophysics: Introduction Press F1 for Help 13 Stars & Elementary Astrophysics: Introduction Press F1 for Help 14 Naked Eye Stars Magnitude Difference (measures brightness ratio) • brightest: Sirius (mag -1.5) • bright mag -1 1 star m1- m2 = -2.5 log( F1/ F2 ) . 0 3 m1 > m 2 F 1 < F 2 . 1 11 m1 - m 2 F 2 / F 1 . 2 40 5 100 . 3 150 10 104 . 4 500 1 5100 @ 2.512 . 5 1600 0.1 » 1.1 (10%) faint mag 6 4800 stars 0.01 » 1.01 (1%) Stars & Elementary Astrophysics: Introduction Press F1 for Help 15 Stars & Elementary Astrophysics: Introduction Press F1 for Help 16 Apparent Magnitude Absolute Magnitude (measures true brightness) • m = apparent mag at distance d. • Sun m = -26.8 25mag= 1010 • M = aparent mag at 10 pc. • full moon -12.5 2 d • venus -4 F (10 pc ) = F (d ) ´ ( 10 pc ) • Sirius -1.5 30 mag= 12 • Vega 0.0 10 M = - 2.5 log ( F (10 pc ) / F 0 ) • faintest galaxies = m - 5 log ( d / 10 pc ) detected by HST +30 • d known (e.g. parallax) for nearby stars. Stars & Elementary Astrophysics: Introduction Press F1 for Help 17 Stars & Elementary Astrophysics: Introduction Press F1 for Help 18 Absolute Magnitude Distance Modulus • m = apparent mag at true distance d. (measures distance) • M = aparent mag at 10 pc. • d known (parallax) for nearby stars • star (pc) m M d m - M = 5 log d /10 pc • Vega 0.0 +0.5 8.1 ( ) • Sirius -1.5 +1.4 2.7 = 5 log ( d / pc )- 5 • Sun -26.8 +4.5 1/206265 • Which star is truly brighter? Stars & Elementary Astrophysics: Introduction Press F1 for Help 19 Stars & Elementary Astrophysics: Introduction Press F1 for Help 20 Electromagnetic Radiation Thermal (Blackbody) radiation (EMR) • EMR = Light (of any wavelength) • • speed of light in vacuum (slower in air, glass,…) Characterised by temperature T. c = 3´108 m /s furnace temperature T • wave properties (interference,diffraction) . frequency = speed / wavelength small hole . Hz = cycles/s = (m/s) / m f = c / l • particle properties (photons) blackbody radiation . discovery by Planck (1900) E = h f light reaches equilibrium . photon energy : with hot walls of furnace. h = Planck’s constant (6.6x10^(-34) Joule/Hz) Stars & Elementary Astrophysics: Introduction Press F1 for Help 21 Stars & Elementary Astrophysics: Introduction Press F1 for Help 22 Stellar Spectra Blackbody Spectra Planck function (1900) • Resemble blackbody spectra • temperature T at star surface B(l,T ) • (hotter interior invisible) hot 1. Peak shifts 2. Area increases photon escapes First clue to quantum mechanics To Earth cool photon trapped in gas near star surface wavelength l Stars & Elementary Astrophysics: Introduction Press F1 for Help 23 Stars & Elementary Astrophysics: Introduction Press F1 for Help 24 Wien’s Law Star Colours T = constant l max cool hot » 0.003 m K 4 æ l max ö æ10 K ö ç ÷ » ç ÷ è 300 nm ø è T ø Stars & Elementary Astrophysics: Introduction Press F1 for Help 25 Stars & Elementary Astrophysics: Introduction Press F1 for Help 26 Wien’s Law in action B(l,T ) Blackbody Flux Area increases with T. • Sun: 6000 K, 500 nm T » lmax » 4 – intensity peak at visible wavelength B( T ) = s T – looks yellow or white to us l • hot star: T = 12000 K, l » 250 nm max energy W æ W ö – ultraviolet peak, looks blue units : = ç ÷ ( K4 ) time area m2 m2K4 • cool star: T = 3000 K, lmax » 1000 nm è ø – infrared peak, looks very red Stefan Boltzmann constant s = 5.7 ´ 10 - 8 W m - 2 K - 4 Stars & Elementary Astrophysics: Introduction Press F1 for Help 27 Stars & Elementary Astrophysics: Introduction Press F1 for Help 28 Review Review magnitudes : m = -2.5 log ( F / F 0 ) temperature : T M = m -5 log ( d /10 pc) flux at star surface : B(T) = s T4 light speed : c = 3´108 m / s radius : R area : 4p R2 frequency: f = c / l 2 4 photonenergy : E = h f luminosity : L = 4p R s T 2 4 R,T distance : area : 4 æ l max ö æ10 K ö d p d blackbody peak: ç ÷ » ç ÷ è300 nm ø è T ø luminosity : L = 4p d2 F flux : B(T) = s T 4 d 2 L 4æ R ö flux : F = =s T ç ÷ 4p d2 è d ø Stars & Elementary Astrophysics: Introduction Press F1 for Help 29 StarsF & Elementary Astrophysics: Introduction Press F1 for Help 30 White Dwarf vs Red Giant log L = 2 log R + 4 log T + const (Earth-sized star) bright 100 R1 = 0.01Rsun R 2 = Rsun T1 =30,000 K T2 = 3,000 K R/Rsun 2 4 100 æ L1 ö æ R 1 ö æ T 1 ö log L ç ÷ = ç ÷ ç ÷ 10 è L 2 ø è R 2 ø è T 2 ø . 1 = -8 ´ 4 = - 4 0.1 10 10 10 0.01 faint L = 4p R 2 s T 4 hot cool log L = log( 4ps ) + 2 log R + 4 log T log T Stars & Elementary Astrophysics: Introduction Press F1 for Help 31 Stars & Elementary Astrophysics: Introduction Press F1 for Help 32 Our Sun’s Future How a Star works Nuclear furnace H --> He --> C, N, O, … Fe R/Rsun Hot gas pushes out. Gravity pulls in. 100 log Force: Force: L 10 k T M 2 ~ ~ G M F out F in 2 1 m R R 0.1 0.01 G M m log T T ~ » 2´ 10 7 K Sun’s Core Temperature: k R Stars & Elementary Astrophysics: Introduction Press F1 for Help 33 Stars & Elementary Astrophysics: Introduction Press F1 for Help 34 Our Sun’s Future Planetary NebulaNebulae (PN) (PN) He --> C,N,O,... envelope ejects envelope expands (Planetary Nebula) (red giant) He core H --> He Ashes cool 75% H, 25% He (made in the Big Bang) (white dwarf) Stars & Elementary Astrophysics: Introduction Press F1 for Help 35 Stars & Elementary Astrophysics: Introduction Press F1 for Help 36 Dumbell Nebula (M27) Egg Nebula (polarised) Dumbell Nebula (M27) Egg Nebula (polarised) Stars & Elementary Astrophysics: Introduction Press F1 for Help 37 Stars & Elementary Astrophysics: Introduction Press F1 for Help 38 NGC 3132 NGC 3132 Hourglass Hourglass Stars & Elementary Astrophysics: Introduction Press F1 for Help 39 Stars & Elementary Astrophysics: Introduction Press F1 for Help 40 Spirograph Spirograph Ring (M57) Ring (M57) Death of a Star, Stars & Elementary Astrophysics: Introduction Press F1 for Help 41 BirthStars & Elementaryof a Astrophysics: White Introduction Dwarf Press F1 for Help 42 Broadband Photometry SpectrumVega Spectrum of Vega bandpass filters B V B B(l,T) U R Flux ratios I U e.g.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us