Thermomolecular Pressure in Surface Melting: Motivation for Frost Heave Author(s): J. G. Dash Source: Science, New Series, Vol. 246, No. 4937 (Dec. 22, 1989), pp. 1591-1593 Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/1704667 Accessed: 22-11-2015 23:33 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science. http://www.jstor.org This content downloaded from 132.174.254.159 on Sun, 22 Nov 2015 23:33:34 UTC All use subject to JSTOR Terms and Conditions increasesthe mass input, and melting has GeophysicalUnion, Washington,DC, 1985), pp. 22. Glacio-isostaticuplift ended 4000 to 5000 yearsago 59-85. (A. Weidick,in Geologyof Greenland,A. Escherand little effect.Below the equilibriumline, in- 9. H. J. Zwally,A. C. Brenner,J. A. Major, R. A. W. S. Watt, Eds. (The GeologicalSurvey of Green- creasesln preclpltatlonreduce t le net sum- Bindschadler,J. G. Marsh, Sciet1ce 246, 1587 land, Denmark,1976), p. 450. Figure 3 in (1) mer ablationand partiallyoiset increasesin (1989). showsthat the riseis 3 mm/yearnear the coastand 9 10. Errorsare 1 SD of dHldt slope for Geosat-Geosat mm/yearin the centralarea. melting.Although the altitudeof the equi- measurcments,and SD of the meancrossover differ- 23. Accumlllationdata are summarizedin U. Radoket libriumline increaseswith increasedrem- ence plus error ill relativegeoid correctionfor al., Climaticand PhysicalCharactenstics ofthe Greenland perature,it decreaseswith increasedprecipi- Geosat-Seasatmeasuremellts. The densityof orbital Ice Sheet:Parts I and II (Univ. of Colorado,Boulder, crossoversis largest at the maxamumlatitude of 1982). tation and with increasedcloudiness (27). 72°N and decreasessignificantly to the south, be- 24. G. de Q. Robin, Philos. Trans.R. Soc. LondonSer. B Therefore,changes in position of the equi- causeof the geometryof the groundtracks. Seasat 280, 143 (1977). data coverageis shown in H. J. Zwally, R. A. 25. D. H. Bromwich,Rev. Geophys.26, 149 (1988). libriumline might be small as temperature Bindschadler,A. C. Brenner,T. V. Martin,and R. 26. Antarcticdata in (24) suggest6% per Kelvinat the andprecipitation increase togethel-. Because H. Thomas[J. Geophys.Res. 88, 1589 (1983)] and surfaceand 11%per Kelvinabove the surfaceinver- nearly100% of the Antarcticice sheet and typical Geosat coverage in H. J. Zwally, A. C. sion layerfor the equationof M. Mellor [Polarfors- Brenner,J. A. Major,alld R. A. Billdschadler[Johns chung5, 179 (1963)]. Temperatureand accumula- 85% of the Greenlandice sheet are above HopkislsAppl. Phys. Lab. Dig. 8, 251 (1987)]. The tion records since 1965 at an Antarcticcoastal the presentequilibrium line, the dominant density of elevation differencesis also smaSlerat stationgive 18%per Kelvin[D. W. S. Limbert,in short-termeffiect is likely to be ice-sheet lower elevations,because the altimetermeasure- Environmentof West A^ntarctica:Potenttal CO2-Induced mentsare less continuousover the steeperand more Changes, M. F. Meier and C. R. Bentley, Eds. growth. An increase in precipitationand irregularsurface near the ice-sheetmargins and the (NationalAcademy of Sciences,Washington, DC, temperatureshould cause an immediatepos- altimetermeasurement errors are also larger. The SD 1984), pp. 116-139]. The positivelinear relation (with 3 SD editing) for Geosat-Geosatcrossovers betsveenGreenland accumulation and bl80 values itive change in the mass balance and a increasesfrom 1.06 m at 72°N to 2.93 m between (18)and, therefore, temperature give 5%per Kelvin; gradualsteepening of an ice sheet, which 60°N and 63°N. Similarly,SD is 1.06 m in the modelingexperiments [M. E. Schlesingerand J. F. would continue for many years as the ice elevatiollballd between 2700 and 3300 m and4.79 B. Mitchell,Rev. Geophys. 25, 760 (1987)] show m in the bandbetween 700 and 1200 m. precipitationincreases of about 0.2 m/yearin polar flow respondedto the drivingstresses. 11. By the ExpeditionGlaciologique Internationale a regionsfor greenhousewarming associated with a In conclusion, Greenland ice-sheet Groenland(EGIG). doublingof CO2concentration, which is a changeof growth is consistent with the generally 12. H. Seckel,Medd. Groenl. 187, no. 4 (1977). about 5 to 20% per Kelvin at the latitudes of 13. A. Bauer,A. Ambach,O. Schimpp,ibid., 174, no. 1 Greenland. warmer temperatures(28) experiencedin (1968). 27. W. Ambachand M. Kuhn, pp. 255-257 in (7), this century.If climatecontinues to warm, 14. N. ReehandN. S. Gundestrup,J.Glaciol. 31,108, showequilibrium rise of 77 m perKelvin increase in 198 (1985). surfaceair temperature,a fall of 73 m per 0.1-m enhancedprecipitation in polarregions may 15. J. M. Kosteckaand I. M. Whillans,ibid. 34, 31 illcreasein snowfall,and a fall of 4 m per 10% ofEsetincreases in melting. Although the (1988). increasein cloudiness. Antarcticice sheet is a likelysource of water 16. In a continuityequation, Vj equalsthe dowllward 28. J. Hansenand S. Lebedeff,Geophys. Res. Lett. 15, ice velocity plus the verticalice motion due to 323 (1988). for currentsea-level rise, its mass balanceis hori70ntaladvection. 29. J. L. Bufton,J. E. Robinson,M. D. Femiano,F. S. uncertain.Over much of Antarctica,which 17. Also, changesin Vcpare a secondaryeffiect primarily Flatow,IEEE Trans. Geosci. RemoteSensing GE-20, contains91% of the earth'sice, the annual determinedby challgesin A (t) andB(t), andchanges 544 (1982). in Vbare negligible. 30. This workis supportedby NASA'sOcean Processes mass input is only 10% of the Greenland 18. H. B. Clausen,N. S. Gundestrup,S. J. Johllsen,R. Program.I thankS. Jacobsfor his compilationof values,so that significantelevation changes Bindschadler,J. Zwally, Ann. Glaciol. 10, 10 estimatesof Antarcticmass fluxes and D. Bromwich (1988). forpointing me to literatureon polarprecipitation. I may be ten times as small. Laser altimetry 19. N. Reeh et vl., J. Glaciol. 20, 27 (1978). appreciatethe usefilldiscussions with R. Alley, R. measurements(29) are needed there, be- 20. N. Reeh, H. B. Clausen, N. Gundestrup,S. J. Bindschadler,C. Lingle, S. Stephenson,and R. causeof its betterrange precision and ability Johnsen,B. StauSer,Istt. Assoc. IXydrol.Sci. Publ. No. Thomas. 118, 177 (1977). to cover the critical ablation zones where 21. R. S. Bradleyet al., Science237, 171 (1987). 29 June1989, accepred13 October1989 radaraltimeters do not adequatelyfollow the more irregularice surfaces. ThermomolecularPressure in SurfaceMelting: REFERENCES AND NOTXS 1. W. R. Peltierand A. M. Tushingham,Science 244, Motivationfor Frost Heave 806 (1989). 2. R. Etkinsand E. Epstein,ibid. 215, 287 (1982); V. Gornitz,S. Lebedeff,}. Hansen,ibid., p. 1611. J. G. DASH 3. M. F. Meier,ibid. 226, 1420 (1984). 4. J. Hansenet al., J. Geophys.Res. 93, 9341 (1988). 5. Forexample, a detailedstudy of anAlaskan glacier at A thermomolecularpressure is associated with surface melting, and it can drive mass 60.4°N showsthat there has been significant growth flow along an interfaceunder a lateraltemperature gradient. The pressureis a universal since 1976 as both temperatureand precipitation increased(L. R. Mayo and D. C. Trabant,in The thermodynamicfunction in the limit of thick films. It may be responsible for frost PotentialEffects of CarbonDioxide-lnduced Changes in heave in frozen ground. Alaska, J. H. McBeath,Ed. (Misc. Publ. 83-1, Univ. OfAlaska, Fairbanks, AK, 1984). 6. R. H. Thomas et al., NASA Tech. Memo. 86233 SURFACE MELTINGCONTINUES TO AT- classes of solid materials.The motivating (1985). tract considerableexperimental and force for the effect is the lowering of the 7. M. F. Meieret al., Glaciers,Ice Sheets, as1dSea Level: Effect of a CO2-InducedClimatic Change (National theoreticalinterest, as it involvesfun- interfacialfree-energy of a solid surfaceby a Academyof Sciences,Washington, DC, 1985). damentalquestions in surfacescience and layerof the melted material,which occurs 8. Estimatesof Antarcticaccumulation, iceberg dis- condensedmatter physics and practicalap- for all solid interfacesthat arewetted by the charge,and basal melting made since 1955 showeda positivemass balancebefore about 1974, but im- plicationsin materialsprocessing (i-5). A1- melt liquid. Such a reduction of the free provedrecent values show that an increasein the though the phenomenonhas been explored energyallows a macroscopicallythick film of estimateof accumulation[M. B. Giovinettoand C. in a limited number of materials,it is be- the liquid to be stabilizedat a temperature R. Bentley,Antatstic J. U.S. 20, 6 (1985)] is more than offset by largerincreases in the estimatesof lievedto be a generalcharacteristic of most belowthe normalmelting point. The surface icebergdischarge [O. Orheimlp. 210 in (7):1and free energyof the film varieswith its thick- basalmelting [S. S. Jacobs,R. G. Fairbanks,Y. Horibe, in Oceanology of the AntarcticContinental Departmentof Physics,FM-15, Universityof Washing- ness and asymptoticallyapproaches the val- Shelf S. Jacobs,Ed. (Antarct.Res. Ser. 43, American
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages4 Page
-
File Size-