Smart Cities Atlanta - North Avenue

Smart Cities Atlanta - North Avenue

City of Atlanta Research Project Final Report SMART CITIES ATLANTA - NORTH AVENUE By Michael Hunter, Ph.D., Principal Investigator Randall Guensler, Ph.D., co-Principal Investigator Angshuman Guin, Ph.D., co-Principal Investigator Abhilasha Saroj, Ph.D. Candidate Somdut Roy, Ph.D. Candidate School of Civil and Environmental Engineering, Georgia Institute of Technology December 2019 The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the City of Atlanta. This report does not constitute a standard, specification, or regulation. Smart Cities Atlanta - North Avenue TABLE OF CONTENTS 1.0 INTRODUCTION .............................................................................................................. 1 North Avenue ITS Demonstration Testbed Overview.................................................... 1 Project Background ......................................................................................................... 2 2.0 LITERATURE REVIEW ................................................................................................... 5 Connected Corridor Deployments and Testbed Studies ................................................. 5 Real-Time Traffic Data-Driven Simulation Modelling .................................................. 6 Traffic Data Imputation Methodologies ......................................................................... 8 3.0 PHASE 1: HYBRID MODEL ARCHITECTURE, DATA DESCRIPTION, AND PERFORMANCE TEST .................................................................................................... 9 Introduction ..................................................................................................................... 9 Model Architecture ....................................................................................................... 10 3.2.1. Traffic Simulation Model ..................................................................................... 11 3.2.2. Injecting Real-Time Intersection Signal State and Volume Count Data .............. 11 3.2.3. Dynamic Performance Evaluation Visualizations ................................................ 12 Result and Discussion ................................................................................................... 14 3.3.1. Real-time Performance Measures Computation ................................................... 14 3.3.2. Model Sensitivity to Real-Time Input .................................................................. 15 Conclusion and Future Work ........................................................................................ 18 4.0 UPDATED MODEL ARCHITECTURE, DATA ISSUES, AND MODEL PERFORMANCE SENSITIVITY TO VOLUME IMPUTATIONS EXPERIMENT ..... 20 Introduction ................................................................................................................... 20 Updated Real-Time Data-Driven Simulation Model Architecture ............................... 21 4.2.1. Real-Time Raw Data Stream Processing Module ................................................ 22 4.2.2. Dynamic Data-Driven Traffic Simulation Module ............................................... 23 4.2.3. Dynamic Performance Measures Visualization Module ...................................... 25 4.2.4. Data Request Transactions Management Module – Flask Web Server ................ 25 Software Architecture ................................................................................................... 26 4.3.1. Extract, Transform, and Load Data ....................................................................... 26 4.3.2. Data Retrieval and Coordination via Flask ........................................................... 28 4.3.3. Real-time Trajectory and Signal Data-processing ................................................ 30 4.3.4. Trajectory Data Condensation .............................................................................. 31 4.3.5. KPI calculation...................................................................................................... 34 4.3.1. Visualization frontend ........................................................................................... 36 Smart Cities Atlanta - North Avenue Investigation of Real-Time Data Streams ..................................................................... 36 4.4.1. Volume Data Streams ........................................................................................... 37 4.4.2. Signal Data Streams .............................................................................................. 42 Sensitivity Analysis Experiment Methodology ............................................................ 45 4.5.1. Experiment Design................................................................................................ 45 Results ........................................................................................................................... 58 4.6.1. Intermittent Data Loss ........................................................................................... 60 Discussion ..................................................................................................................... 63 Conclusion .................................................................................................................... 64 5.0 CONCLUSIONS............................................................................................................... 65 Recommendations and limitations ................................................................................ 66 Next Steps ..................................................................................................................... 66 6.0 REFERENCES ................................................................................................................. 67 APPENDIX A: SIDEWALK, RAMP, AND CURB CUT INVENTORY AND ASSESSMENT .......................................................................................................................................... A1 Smart Cities Atlanta - North Avenue Table of Figures Figure 1: North Avenue corridor and local neighborhoods ........................................................... 3 Figure 2: Households in each North Avenue corridor neighborhood ............................................ 3 Figure 3: Hybrid model architecture. ........................................................................................... 10 Figure 4: Study corridor (Courtesy: Google Maps ®) ................................................................. 11 Figure 5: Flowchart for Vissim COM driver script. .................................................................... 13 Figure 6: Architecture for dynamic visualization of energy performance indicators. ................. 14 Figure 7: Energy plot generated dynamically during simulation runtime. .................................. 15 Figure 8: Routes selected for studying model's sensitivity to real-time input. ............................ 16 Figure 9: Average vehicle travel time versus simulation time intervals plots for (a) Westbound Route 4, and (b) Eastbound Route 6. ............................................................................ 17 Figure 10: (a) Scatterplot for energy consumption versus travel time for Route 3, and (b) Cumulative energy consumption density function for vehicles on Route 3. .............. 18 Figure 11: Study corridor-2.3 miles of North Avenue Smart Corridor, including 15 signalized intersections. ............................................................................................................... 21 Figure 12: Updated real-time data-driven simulation model architecture overview. ................... 21 Figure 13: Snapshot of raw volume count data. ........................................................................... 22 Figure 14: Snapshot of raw signal event data. ............................................................................. 23 Figure 15: Overview of dynamic data-driven traffic simulation initialization logic. .................. 24 Figure 16: Overview of dynamic data-driven traffic simulation runtime logic. .......................... 25 Figure 17: Sample from signal state data table ............................................................................ 27 Figure 18: Sample from volume data table .................................................................................. 27 Figure 19: Demarcation process for segments ............................................................................. 32 Figure 20: Association of data points to a segment ...................................................................... 33 Figure 21: Sample KPI visualization lookup-table ...................................................................... 35 Figure 22: Screenshot of visualization website for March 18, 2019 ............................................ 36 Figure 23: Four-steps of data processing to obtain the Standardized Name Table from Raw Volume Table ........................................................................................................................... 38 Figure 24: 3D visualizations of missing data intervals by hour, with 24-hours of a day on the x- axis, 112 days on the y-axis, and detectors on the z-axis. Figures (a-k) show hours with 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 6-minute missing intervals. .......................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    82 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us