Design and Construction Guidelines for Thermally Insulated Concrete Pavements

Design and Construction Guidelines for Thermally Insulated Concrete Pavements

Design and Construction Guidelines for Thermally Insulated Concrete Pavements Final Report Prepared by Lev Khazanovich, Jose T. Balbo, Luke Johanneck, Rita Lederle, Mihai Marasteanu, Priyam Saxena, Derek Tompkins, Mary Vancura, and Mark Watson University of Minnesota Department of Civil Engineering John Harvey, Nicholas J. Santero, and James Signore University of California Pavement Research Center August 2012 Published by Center for Transportation Studies University of Minnesota 200 Transportation and Safety Building 511 Washington Ave. S.E. Minneapolis, MN 55455 This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the University of Minnesota. The authors and the University of Minnesota do not endorse products or manufacturers. Any trade or manufacturers’ names that may appear herein do so solely because they are considered essential to this report Table of Contents Executive Summary ........................................................................................................................ x Introduction 1 MEPDG and Climate Modeling Validation and Analysis .............................................................. 2 2.1. Effect of Climate Data and Climate Modeling on MEPDG Predictions for Composite Pavements ................................................................................................................................... 2 2.2. Characterization of Unbound Materials in the MEPDG and DARWin-ME ................ 49 Response Model for Combined Thermal and Traffic Loading ..................................................... 65 3.1. Background ................................................................................................................... 65 3.2. Finite element analysis of composite pavement incorporating a viscoelastic layer ..... 80 3.3. Stress Solutions Using the 2-Moduli Approach ......................................................... 119 3.4. Development of a Framework for Implementation of the 2-Moduli Approach into MEPDG .................................................................................................................................. 137 3.5. The 2-Moduli Approach in Summary ......................................................................... 146 Design and Analysis of TICP ..................................................................................................... 148 4.1. HMA-PCC Rutting Models ........................................................................................ 148 4.2. HMA-PCC Reflective Cracking Models .................................................................... 173 4.3. JPCP Cracking Models for HMA-PCC ...................................................................... 199 4.4. JPCP Faulting Models for HMA-PCC ........................................................................ 208 4.5. Guidelines to TPF-5(149) Procedure for Design and Analysis of TICP .................... 216 4.6. Design and Analysis Discussion and Conclusions ..................................................... 219 Construction Practices for HMA-PCC Composite Pavements ................................................... 221 5.1 Construction Practices for HMA-PCC Composite Pavements ................................... 221 5.2 AC Mix Design for HMA-PCC .................................................................................. 251 Life Cycle Cost Analysis Case Studies ....................................................................................... 263 6.1. Background Information for Caltrans Case Studies ................................................... 263 6.2. Reconstruction of truck lanes on I-15 in California .................................................... 265 6.3. Construction of new pavement lanes on State Route 70 in California ....................... 271 6.4. Construction of two lanes on a major highway or interstate in Minnesota ................ 277 6.5. Structural analysis and LCCA .................................................................................... 282 References 283 Appendices 1 A.1 Construction Practices Survey ........................................................................................ 1 i List of Tables Table 2-1 Transverse Cracking Percentage in PCC layer of AC/PCC projects, Organized by Environmental Conditions .................................................................................................... 11 Table 2-2 Predicted Distresses for AC/PCC Projects in Southern California ............................. 14 Table 2-3 Predicted Distresses for Locations near Long Island, New York ............................... 15 Table 2-4 Predicted Cracking Values .......................................................................................... 17 Table 2-5 Percent Slabs Cracked in AC/PCC Projects for Additional Locations ....................... 19 Table 2-6 Percentage of Un-Flagged Data in MnROAD Cells 106 & 206 ................................. 27 Table 2-7 Depths of Sensor Pairings Located in Cell 106 ........................................................... 28 Table 2-8 Effect of PCC Thermal Conductivity on Transverse Cracking in PCC Layer ............ 39 Table 2-9 Effect of AC Thermal Conductivity on Transverse Cracking in PCC Layer .............. 39 Table 2-10 Effect of PCC Heat Capacity on Transverse Cracking in PCC Layer ...................... 40 Table 2-11 Effect of AC Heat Capacity on Transverse Cracking in PCC Layer ........................ 40 Table 2-12 Effect of the Coefficient of Thermal Expansion in the PCC Layer on Predicted Pavement Performance of an AC/PCC Pavement ................................................................ 41 Table 2-13 Effect of the Coefficient of Thermal Expansion in the PCC Layer on Predicted Pavement Performance of a PCC Pavement ......................................................................... 41 Table 2-14 Effect of PCC Thickness for an AC/PCC Composite Pavement with a 2-in AC Layer ............................................................................................................................................... 42 Table 2-15 Effect of PCC Thickness for an AC/PCC Composite Pavement with a 3-in AC Layer ............................................................................................................................................... 42 Table 2-16 Effect of Joint Spacing on Predicted Pavement Performance ................................... 43 Table 2-17 Effect of Slab Width on Predicted Pavement Performance ....................................... 43 Table 2-18 MEPDG Default Gradation Values for A-1-a and A-3 Base Layers ........................ 45 Table 2-19 Resilient Modulus (MR) for Various Subgrades Computed using CBR and CBR* in the MEPDG and DARWin-ME ............................................................................................ 52 Table 2-20 Alligator Cracking and Total Rutting After 20 years as Predicted by the MEPDG and DARWin-ME for 4” Flexible Pavement with an A-1-a Base and Various Subgrades and Material Parameter Inputs ..................................................................................................... 55 Table 2-21 Inputs for Base and Subgrade Variation .................................................................... 56 Table 4-22. Model coefficients for CalME fatigue model .......................................................... 154 Table 4-23. Model coefficients for CalME rutting model .......................................................... 155 Table 4-24. HVS loading program for example section ............................................................. 162 Table 4-25. Section 609HB temperature summary for air and pavement. ................................. 165 ii Table 4-26. MnROAD Cell 106/206 design in summary ........................................................... 169 Table 4-27. Assigned values for Heff, c, and d in original MEPDG reflective cracking model (from AASHTO 2008) ........................................................................................................ 175 Table 5-28: Checklist of design and construction activities for concrete pavements (adapted from Grogg and Smith, 2001) ...................................................................................................... 229 Table 5-29: Recommended aggregate gradation for RCC mixes (from ACI 1995) ................... 233 Table 5-30. Sieve sizes used to define fine and coarse mixes in AASHTO M 323 (from Christensen and Bonaquist 2006) ....................................................................................... 255 Table 6-31. Caltrans Case 1 JPCP maintenance and rehabilitation schedule ............................. 266 Table 6-32. Caltrans Case 1 TICP Design 1 maintenance and rehabilitation schedule .............. 267 Table 6-33. Caltrans Case 1 TICP Design 2 maintenance and rehabilitation schedule .............. 268 Table 6-34. Caltrans Case 1: Change of PCC thickness in TICP pavement for same NPV as JPCP with 1:1 costs ...................................................................................................................... 269 Table 6-35. Caltrans Case 1: Change of PCC thickness in TICP pavement for same NPV as JPCP with 0.8:1 costs ................................................................................................................... 270 Table 6-36. Caltrans Case 1: Change of PCC life in TICP pavement for same NPV as

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    322 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us