Selected Topic S in the Geometrica L Study of Differentia L Equations

Selected Topic S in the Geometrica L Study of Differentia L Equations

Selected Topic s in the Geometrica l Study o f Differentia l Equations In fron t o f the Founder s Librar y From lef t t o right: crouching : Gloria Mari-Beffa , Pete r Olver , Thierry Robart , Nik y Kamran; stand - ing (fron t row) : Pete r Hydon , Barbar a Shipman , Irin a Kogan , Evelyn e Hubert , Mik e Lacorte , Mohammad Mahmood , Da n Grossman , Pau l Kainen , Elizabet h Mansfield , Sylvi e Desjardins , Maya Chhetri , Joshu a Leslie , Debr a Lewis , Gabrie l Ayine , Zhoud e Shao , Jin g Pin g Wang , Mingxiang Chen , Ami r Maleki ; standin g (bac k row): Stephen Shipman , Mar k Fels , Rafael Heredero , Enrique Reyes , Stanle y Einstein-Matthews , Andr e Wehner , Vladimi r Itskov , Pete r Clarkson , Jeffrey Morton , Austi n Roche , Pete r va n de r Kamp , Al i Ayari, Rober t Milson , Matthe w Biesecker , Clement Lutterodt . http://dx.doi.org/10.1090/cbms/096 Conference Boar d o f the Mathematical Science s CBMS Regional Conference Series in Mathematics Number 9 6 Selected Topic s in the Geometrica l Study o f Differentia l Equations Niky Kamran Published fo r th e Conference Boar d of the Mathematica l Science s by the American Mathematica l Societ y * fkL'' ^ Providence, Rhod e Islan d with support fro m th e National Science Foundatio n CBMS Conferenc e o n the Geometrica l Stud y o f Differentia l Equation s hel d a t Howar d University, Washington , D.C . June 20-25 , 200 0 Partially supporte d b y th e National Scienc e Foundatio n 2000 Mathematics Subject Classification. Primar y 58A20 , 58J70, 58J72 , 58J10 , 58E30 , 58E40, 35L65 , 35L60. Library o f Congres s Cataloging-in-Publicatio n Dat a Kamran, Niky , 1959 - Selected topic s i n the geometrica l stud y o f differentia l equation s / Nik y Kamran . p. cm . — (Conferenc e Boar d o f th e Mathematica l Science s regiona l conferenc e serie s i n mathematics, ISS N 0160-764 2 ; no. 96 ) Includes bibliographica l references . ISBN 0-8218-2639- 5 (acid-fre e paper ) 1. Differentia l equations . 2 . Geometry , Differential . I . Title. II . Regiona l conferenc e serie s in mathematic s ; no. 96 . QA1 .R3 3 no. 9 6 [QA372] 510 s-dc2 1 [515'.35] 2002066482 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapter fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , o r multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed t o the Acquisition s Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail t o [email protected] . © 200 2 b y the America n Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o th e Unite d State s Government . Printed i n the Unite d State s o f America . @ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . Visit th e AM S hom e pag e a t URL : http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 0 7 06 0 5 04 03 0 2 Pour Sepi, Adrien et Nicolas. This page intentionally left blank Contents Preface i x Acknowledgments xii i Chapter 1 . Differentia l equation s an d thei r geometr y 1 1. Th e Cauch y proble m fo r first-orde r partia l differentia l equation s 1 2. Hyperboli c equation s integrabl e b y the metho d o f Darboux 3 3. External , interna l an d generalize d symmetrie s 5 4. Th e invers e proble m o f the calculu s o f variations 6 5. Som e important topic s no t covere d i n these lecture s 7 Chapter 2 . Externa l an d generalize d symmetrie s 9 1. Je t bundle s 9 2. System s o f differential equation s 1 2 3. Externa l symmetrie s 1 3 4. Classica l symmetr y reductio n 1 5 5. Contac t transformation s an d Backlund' s Theore m 1 7 6. Generalize d symmetrie s o f differential equation s 1 9 7. Generalize d symmetrie s an d conservatio n law s 2 2 Chapter 3 . Internal , externa l an d generalize d symmetrie s 2 7 1. Interna l symmetrie s 2 7 2. Norma l system s o f ordinary differentia l equation s 2 8 3. Under-determine d system s o f ordinary differentia l equation s 2 9 4. Contac t condition s fo r ordinar y differentia l equation s 3 2 5. Contac t condition s fo r partia l differentia l equation s 3 5 Chapter 4 . Transformation s o f surfaces 3 9 1. Th e metho d o f Laplace 3 9 2. Th e Laplac e transformation fo r surface s 4 2 3. A n applicatio n t o the sf e Tod a fiel d theor y 4 4 Chapter 5 . Transformation s o f submanifolds 4 7 1. A multi-dimensional geometri c Laplac e transformation 4 7 2. Transformation s o f systems o f partial differentia l equation s 5 1 Chapter 6 . Hamiltonia n system s o f conservation law s 5 7 1. System s o f conservation law s and thei r loca l geometry 5 7 2. Strongl y hyperboli c system s ric h i n conservation law s 6 0 3. Th e Laplac e transformation fo r strongl y hyperboli c system s 6 3 Chapter 7 . Th e variationa l bi-comple x 6 7 viii CONTENT S 1. Je t bundle s o f infinite orde r 6 7 2. Th e tautologica l variationa l bi-comple x o n J°°{E) 6 9 Chapter 8 . Th e invers e proble m o f the calculu s o f variations 7 5 1. Th e local , globa l an d equivarian t invers e problems 7 5 2. Edg e complexe s an d obstruction s 7 8 3. Variationa l principle s an d symmetr y reductio n 8 1 Chapter 9 . Conservatio n law s and Darbou x integrabilit y 8 3 1. Scala r hyperboli c partia l differentia l equation s i n the plan e 8 3 2. Th e constraine d variationa l bi-comple x 8 5 3. Conservatio n law s 8 6 4. Th e generalize d Laplac e invariant s 8 9 5. Vanishin g theorem s fo r conservatio n law s 9 2 6. Darbou x integrabilit y 9 3 7. Furthe r application s 9 7 Chapter 10 . Characteristi c cohomolog y o f differentia l system s 9 9 1. Exterio r differentia l system s 9 9 2. Som e existence theorem s fo r integra l manifold s 10 1 3. Involutiv e system s an d th e Cartan-Kahle r theore m 10 3 4. Characteristi c cohomolog y 10 8 Bibliography 111 Preface The geometrica l stud y o f differentia l equation s ha s a lon g an d distinguishe d history, goin g bac k t o th e classica l investigation s o f Sophu s Lie , Gasto n Darbou x and Eli e Cartan. Thei r idea s ar e at th e sourc e o f a number o f developments whic h currently occupy a central position in several areas of pure and applied mathematics, including th e theor y o f completel y integrabl e evolutio n equations , th e calculu s o f variations an d the stud y o f conservation laws . Our objective i n these lectures i s to giv e an overview o f a number o f significan t ideas and result s that hav e been developed ove r the past decad e i n the geometrica l study o f differential equations . I t i s of course impossible in the course often lecture s to cove r al l the importan t advance s that hav e taken plac e i n suc h a broad field o f research. Thi s survey is therefore far from complete, and it does not succeed in doing full justic e t o al l th e idea s tha t i t aim s t o convey . W e hav e chose n t o focu s ou r attention on a number o f topics which we have found to be of particular significance , or i n whic h w e have bee n involve d throug h ou r ow n research .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us