An Example on Maximum Likelihood Estimates

An Example on Maximum Likelihood Estimates

An Example on Maximum Likelihood Estimates LEONARD W. DEATON Naval Postgraduate School Monterey, CalifornioCalifornia In most introductoryintrodcuctory courses in nlathematicalmatlhematical sta­sta- n/2 n tistics, students see examples and work\vork problems illin :E I f) - lJiI+1-t' I :E If) - 'lit' I, ,,,hichwhich the lnaximummaximum likelihood estimate (IVILE)(MLE) of a ~·=1i=l i=(n/2)+1i= (n1/2) +1 parameter turns out to be either the s[1,mplesample mean,meani, the (3) becomesbeconles sample variance, or the largest, or the smallest sample )/ n item. The purpose of this note is to provide ananiexam examplepIe :E I Yyii --? '777 I ~< :E I Jj -ii -_ f) I' in \\Thichwlhich the IVILEAILE is the sanlplesample nledianmedian and a simple £=1 proof of this fact. But, Suppose a randonlrandom sample of size nit is taken fronlfrom a n n J~; - populatioinpopulation \vithwith the Laplace distribution f(x;f( f))0) = :E 1 'J/iI- - 117 !, = :E I xJ'i - 117III I (!)(2) exp (- I x - f)6 I ). The mean, mode, and nledianmediaii i=l of this distribution is f).0. 1"'1heThe sample median is the lVILEMLE and of f)0 ([lJ,([1] , page 247). n n t1.~ ~ Il~ix-1.(4 Proof: The likelihood functionfuniction is :El,yiI Yi --af) I = :Elxi - f)l \. (4) i=1i=l i=l L(0) - ( ) exp j x- I The desired results follo\ys.follows. Case II: Let n be odd. Then y(n+l)/2Y(,2+1)/2 is the sanlplesample Now,No\,', I.JL is maxinlummaximum \vhenwhen median. As in (2) above, \\Tewe havelave n ZKr- I YiI 2- - Y(,+1)/2Y(n+l)/2 I + I Y(n+l)/2Y(-+1)12 - Yn-j-l-i I :E I fi - f) I = i=li=l y-/ Y22+1-2 YII1-2<? 6 + 6 (5) is minimunl,minimum. It \villwill be sho\vnshown that the inequality, for i1~ = 1, 2, ...*, , (n + 1) /2/2- - 1,1, and f)0 any real number. n n Also, :E I J'i - f) I ~ :E I J'i - 117 I, 0 === I Y(n+l)/2Yn+1)/2 -- Y(n+l)/2Y(22+U/2 I <~ I Y(n+l)/2Y(n+1/2 -- f) I (6) i=l i=l o By summing in (5), \yewe see that where\\There 117mi2is the sample median, holds for every valuevaltue of summing f).0. Consider t\VOtwo cases. (n+l)/2-1 - z (I '/JiY~i- !J(n+1)/2/1(22+1)/2 I + I Y(n+1)/2Y1(n+1)/2 -Y- Y,I+1-i1h2i I) Case I: Let n be even,even. Let Yl,yi, '11'2,-y,y,3, Y3, •••. .. , Un be the :E i=l observed values of the order statistics,statistics. Let '711iimbe anyaiiy real number betweenbet\veen the t\yOtwNomiddle values so that \vewe ((+12)2-1i=l~~~= (n+l/2)-1 have < :E (I Yi - f) I + I f) - Vn+l-i I ), (7) i=l VlYi?Y::;< V2?2<~ •••.. * Un/2/2?nh2~< 177 ~<(2.)+lY(n/2)+1 ~< •••... ~(< Vn' (1)1 ) But, Z /1+i - /122+1-2 0l+l0-,+- 7 (22+1)/2-2i=1~~~= In particular, 171m11may be the salnplesample median. By applica­applica- (n+l)/2-1 tion of (1) and the triangle inequality we\ve see that But,~~~~~~~~~~~~~~~~~~I:E I Y(n+l)/2 - Yn+l-i I 'i=l - l - Y,1+i-i I Vi - '7111'?1 I + I| III - Yn+1-i I ·n iJ- - 0-X*+- :E 1 Y(n+l)/2 - Yi I (8) == I Yi'Y - J*Z+I-iYn+1-1~ I ~< I 'ViYi - 0f) I + I f)0 - Yn+l-i I (2)(2.) E I V(,I+)/2-,IJ,+1-iIii=(n+1)/2+1i=(2+1) /2+1 for i = 1, 2, ......, , n/2 andanid f)0 any real nlunber,number. andanid lIpon summing in (2) \ve get i==(n +1)/2 + Upon summiing in (2) we get (n+l)/2-1( +2-1)/2-1 n i= 1i= n/2a /2 :E I f) - 'Vn+l-i I :E I Yi -'f) I· i=l i=(11+1)/2+1 :EZX((JiI Yi - 111 I + I|1-117 - Vn+1-in--i-| I)) i=l 21~~~~~~~~~~1' I-Ience,IHence, usinigusing (6) andaiid (8) in (7), \vew-e havellave, n/2n2/2 n n < :EZ (Iy( Yi - f) 1++ 18 1-+y,+i-- !/1I+1-i I),). (3) :E I Y·iViY - YCn+l)/2Y(,,+1,,2 I1 ~ :E I Yii - f)0l I. i=1i=i i=l Now,N ~.\V, sincesiinee NNowv,O\Y, after putting Y(n+1)/2Y(,z+1)/2 = 177III andancd using (4), the proof is complete. n/2tl/2 n2 :E 1117 - Yn+l-i I :E 1177 - Yi 1 REFER,ENCEREFERENCE i=l i=(11/2)+1i=(n /2)+1 1. BoggHogg andanid Ctaig,Cfaig, Introduction t·oto MathematicalNlathemat.ical St.atistics,Statistics, and MAlacmillan,Nlacmillan, (~965).(1965). 49 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us