Why Jacket Matrices?

Why Jacket Matrices?

Why Jacket Matrices? 1 1 T [][]AN a ij Moon Ho Lee (E-mail:[email protected]) wcu.chonbuk.ac.kr, mdmc.chonbuk.ac.kr Institute of Information & Communication Chonbuk National University Jeonju, 561-756, Korea Tel: +82632702463 Fax: +82632704166 htttp://en.wikipedia.org/wiki/Category:Matrices htttp://en.wikipedia.org/wiki/Jacket:Matrix 1 http://en.wikipedia.org/wiki/user:leejacket 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + + -j -j j j - - + + - - + + - - + + j j -j -j - - + + - - + + - - + - -j j j -j - + + - - + + - - + + - j -j -j j - + + - - + + - - + + + j j -j -j - - + + + + - - - - + + -j -j j j - - + + + + - - - - + - j -j -j j - + + - + - - + - + + - -j j j -j - + + - + - - + - + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + - - + - + + - + - - + - + + - + - - + - + + - + - - + - + + - Real Domain Complex Domain The basic idea was motivated by the cloths of Jacket. As our two sided Jacket is inside and outside compatible, at least two positions of a Jacket matrix are replaced by their inverse; these elements are changed in their position and are moved, for example, from inside of the middle circle to outside or from to inside without loss of sign. 3 In mathematics a Jacket matrix is a square matrix A = aij of order n whose entries are from a field (including real field, complex field, finite field ), if AA * = A * A = nIn Where : A * is the transpose of the matrix of inverse entries of A , i.e. Written in different form is a u, v {1,2,...,n }, u v : u, i 0 av, i The inverse form which is only from the entrywise inverse and transpose : Jacket Matrices T j0,0 j0,1 .... j0,n1 1/ j0,0 1/ j0,1 .... 1/ j0,n1 j j .... j 1/ j 1/ j .... 1/ j 1,0 1,1 1,n1 1 1 1,0 1,1 1,n1 J Jmn mn C 1/ jm1,0 1/ jm1,1 .... 1/ jm1,n1 jm1,0 jm1,1 .... jm1,n1 Orthogonal: u , v {1,2,..., n }, u v : a . a 0; a2 const . u,,, i v i u i 4 i i 5 6 Category : Matrices (from Http://en.wikipedia.org/wiki/Category:Matrices) H I J L ▪Hadamard matrix ▪Identity matrix ▪Jacket matrix ▪Laplacian matrix ▪Hamiltonian matrix ▪Incidence matrix ▪Jacobian matrix ▪Lehmer matrix ▪Hankel matrix ▪Integer matrix and determinant ▪Leslie matrix ▪Hasse-Witt matrix ▪Invertible matrix ▪Jones calculus ▪Levinson recursion ▪Hat matrix ▪Involutory matrix K ▪List of matrices ▪Hermitian matrix ▪Irregular matrix ▪Kernel (matrix) ▪Hessenberg matrix ▪Krawtchouk matrices 7 Jacket Basic Concept from Center Weighted Hadamard 1 1 1 1 1 1 1 1 1 2 2 1 1 1/ 2 1/ 2 1 WH ,WH 1 4 1 2 2 1 4 1 1/ 2 1/ 2 1 1 1 1 1 1 1 1 1 1 1 WH N WH N / 2 H 2 where H 2 1 1 Sparse matrix and its relation to construction of center weighted Hadamard 1 WC H WH WC 2I WH H WC N N N N/2 2 N N N N 1 1 1 1 1 WC N WC N / 2 I 2 WH NWC H 2 N N N * Moon Ho Lee, “Center Weighted Hadamard Transform” IEEE Trans. on CAS, vol.26, no.9, Sept. 1989 * Moon Ho Lee, and Xiao-Dong Zhang,“Fast Block Center Weighted Hadamard Transform” IEEE Trans. On 8 CAS-I, vol.54, no.12, Dec. 2007. 9 10 11 12 13 14 1 1 1 1 1 m(n ) 2 N 1 C k cos 2 1 1 1 j j 1 X (n) x(k)wnk N m,n m N N [H ]2 [J]4 k0 1 1 1 j j 1 j 2 / N n 0,1...N 1, w e m,n 0,1,..., N 1 1 1 1 1 [H ]n [H ]n / 2 [H ]2 [J]n [J ]n / 2 [H]2 n 4 n1 n1 i j N 3 N 4 k k ik jk (1) k 0 (1) k 0 w(in2 in1 )( jn2 jn1 ) 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 3 5 7 C C C C 1 w w 1 C4 8 8 8 8 1 1 1 1 2 J 4 F 1 w w 2 6 6 2 H 4 3 C8 C8 C8 C8 1 w w 1 1 1 1 1 1 w2 w C 3 C 7 C 1 C 5 8 8 8 8 1 1 1 1 1 1 1 1 i2 / 3 i w e C i cos w1: Hadamard 8 8 w2: Center Weighted Hadamard 1 C 1 C 2 C 3 2 8 8 8 1 1 1 1 1 1 1 1 3 6 7 1 1 1 1 C 8 C 8 C 8 1 1 1 2 1 1 C 2 1 1 1 1 1 1 F3 1 w w 4 1 1 1 1 1/w 1/w 1 2 C 5 C 6 C 1 H4 J 3 2 1 8 8 8 4 1 w w 2 4 1 1 1 1 4 1 1/w 1/w 1 1 C 7 C 2 C 5 8 8 8 1 1 1 1 1 1 1 1 2 i2 /3 j e 6 2 i2 cos cos 1 e 8 8 1 1 1 2 6 cos i2 /3 cos j e 8 8 DFTN DFTN DFT2N DCT N DCT N DCT 2 N H N H N H 2N J N J N J 2 N 2n p 2n 2n ,4n Arbitrary 15 Jacket Definition: element inverse and transpose 1 T Simple Inverse J L and J mn 1/ Lij mn ij mn mn 1 1 1 1 Examples: 1 1 1 1 i i 1 J 4 J 1 2 1 i i 1 1 1 3 J 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 H 4 1 1 1 1 1 1 1 1 1 1 1 2 J 2 J 1 1 1 1 1 1 1 1 1 1 3 2 1 i i 1 1 J 1 4 1 i i 1 where where 1 0, 2 1 1 2 0, 3 1 1 1 1 1 16 17 18 19 20 21 22 23 24 25 Jacket case [ J ]1 [ J ] 2 1 1 1 1 1 1 1 1 4 0 0 0 1 1 1 1 1 2 0 1 1 1 1 1 1 1 1 1 0 4 0 0 1 a b c 1 1 1 2 1 1 0 2 1 1 1 1 4 1 1 1 1 0 0 4 0 1 1 1 1 1 1 1 1 0 0 0 4 ( a) w re a l 2 1 1 1 1 1 1 1 1 4 0 0 0 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 1 0 6 2 0 1 2 2 1 1 0 3 1 2 2 1 4 1 1 1 1 0 2 6 0 a b c 2 1 1 1 1 1 1 1 1 0 0 0 4 a b 1, c w ( b) w im a g in a ry j 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 j j 1 1 1 1 1 0 (1 j) (1 j) 0 1 1 1 1 1 2 1 j 1 2 2 1 1 1 j j 1 4 1 1 1 1 0 (1 j) (1 j) 0 1 j 2 1 1 0 1 j 2 2 1 1 1 1 1 1 1 1 0 0 0 1 1 2 1 1 3 1 1 2 2 1 1 1 1 1 6 0 0 2 a c b 1 2 1 1 2 1 1 1 1 1 0 6 2 0 3 2 1 2 1 1 1 3 2 1 1 2 4 1 1 1 1 0 2 6 0 a c 1, b 2 1 2 2 1 1 1 1 1 2 0 0 6 1 2 2 1 1 1 1 1 6 0 0 2 a b c 1 2 1 1 1 3 0 2 2 2 2 1 1 1 1 1 0 8 0 0 4 2 2 2 2 4 1 1 1 1 0 0 8 0 a 1,b c 2 2 2 2 1 1 1 4 1 2 2 1 1 1 1 1 2 0 0 6 2 1 1 2 1 1 1 1 6 0 0 2 a b c 2 1 1 1 3 3 1 4 4 1 1 1 1 1 1 0 10 6 0 1 5 1 4 4 1 4 1 1 1 1 0 6 10 0 a 2,b 1,c 4 1 4 2 1 1 1 5 2 1 1 2 1 1 1 1 2 0 0 6 * Moon Ho Lee, “A New Reverse Jacket Transform and Its Fast Algorithm,” IEEE Trans. On Circuit and System 2, vol. 47, no. 1, Jan. 2000. pp. 39-47 26 1 1 J 1 J2 1 1 1 1 1 1 1 1 4 0 0 0 a b 1 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1 0 4 0 0 1 1 1 c 1 2 1 1 2 2 1 1 0 2 4 1 1 1 1 16 1 1 1 10 0 4 0 1 1 1 1 1 1 1 1 0 0 0 4 w real 2 2 2 2 2 1 1 1 1 4 0 0 0 2 1 1 1 3 0 2 1 1 2 1 1 1 10 3 1 0 1 1 1 1 1 2 1 1 2 3 1 11 2 8 2 1 1 2 16 1 1 1 10 1 3 0 2 2 2 2 1 1 1 1 0 0 0 4 a b c a b 1, w imaginary j j j j j 1 1 1 1 4 j 0 0 0 c w j 1 1 j 1 1 1 1 0 2 j 2 2 j 2 0 j 1 1 1 j 1 0 j 1 1 j 1 1 1 1 0 2 j 2 2 j 2 0 1 1 1 1 j 1 2 j j j j 1 1 1 1 0 0 0 4 j j 1 2( j 1) 4 j 16 j 2 1 1 2 1 1 1 1 3 0 0 1 a c b 1 2 2 1 1 1 1 10 3 1 0 1 1 2 1 1 1 1 3 1 1 1 a c 1, 5 2 1 2 5 1 11 3 8 1 2 2 1 16 1 1 1 10 1 3 0 b 2 2 1 1 2 1 1 1 1 1 0 0 3 2 1 1 2 1 1 1 1 3 0 0 1 a b c 1 1 1 1 1 1 1 10 2 0 0 a 1, 1 2 2 1 1 1 1 4 1 1 1 6 2 1 2 6 1 10 3 8 1 1 1 1 16 1 1 1 10 0 2 0 b c 2 2 1 1 2 1 1 1 1 1 0 0 3 2 4 4 2 1 1 1 1 6 0 0 2 a b c 4 1 1 4 1 1 1 1 0 5 3 0 a 2, 1 4 1 1 1 1 1 5 1 1 1 b 1,c 4 9 1 2 2 9 1 13 3 8 4 1 1 4 16 1 1 1 1 0 3 5 0 2 4 4 2 1 1 1 1 2 0 0 6 27 DFT, Fourier,1822 DCT-II, K.R.Rao, 1974 Wavelet, G.Strang,1996 1 N 1 m() n 2 r r nm C kcos2 , m, n 0,1,..., N 1 X( n ) x ( m ) W , 0 n N 1 Nm, n m A NN 2 m0 T r r IIF 0 2 2 2 1,j 1, 2, ..., N 1 T FF Pr 1 1 1/r 1/ r 4 4 4 w here k 1 IIE2 2 0 2 j ,j 0, N * A 2 F 1 j 2 2 1/r 1/ r E 1 1 2 1 j 1 / 2 1 / 2 O C 2 2 2 A Pi A Pj 4 4 4 4 T CC1 3 1 / 2 1 / 2 R 1 1/1 1/j 1 1 4 4 T III 0 *E 2 2 2 2 1 1 2 2 r M 1/1 1/ j j j C * 2 2 IIA2 2 0 2 2 2 IIIINNNN0 FN 0 0 2 2 2 2 2 F ICIIINNNNN/20 /2 0 /2 0 /2 /2 IIIINNNN/20 IN/2 0 /2 0 /2 /2 N C 0 PrNNNN0 FN 0 WII A r N 0KCDII 0 0 N 1 1 2 2 2 2 2 NNNNN/2 /2 /2 /2 /2 0PiNNNN/2 0 AN/2 0 Pj /2 I /2 I /2 1 1 1 1 1 FPF []r [][][][]CPCP A Pi A Pj N N N N rN N c N NNN N IIII0N / 2 0 NNNN/ 2 X( orI N / 2 ) 0 / 2 / 2 / 2 *Jacket Matrices Based on Common Form:X r N 0Pi 0 Pj I I 28 NNNN/ 2 0 X N / 2 / 2 / 2 / 2 Decomposition DCT DFT.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    183 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us