Fermi Liquid Theory of a Fermi Ring

Fermi Liquid Theory of a Fermi Ring

FermiFermi liquidliquid theorytheory ofof aa FermiFermi ringring T. Stauber, N. Peres, F. Guinea, and A. Castro Neto cond-mat/0611468 OverviewOverview Biased bilayer graphene One band approximation: Mexican hat dispersion Coulomb interaction: Self-energy correction Ferromagnetism: Ginzburg-Landau functional Polarizability A) High energies (Non-Fermi liquid behaviour) B) Low energies (Fermi liquid with modified Friedel oscillations) Plasmon dispersion Biased bilayer graphene A2 B2 V t⊥ A1 B1 t V= t⊥ = 3.0 eV Biased bilayer graphene Mexican hat dispersion Mexican hat dispersion a) b) Ek 0.4 , Ek 0.04 k 0.02 0.05 0.05 0 0.044 ky 0.02 0.02 0.4 0 kx 0.02002 0.04 0.04 Fermi ring: k k0 min b kmax Mexican hat dispersion E()= k Δα −2 k λ + 4 k α k 2 = −2πn min,σ 2λ σ α k 2 = +2πn max,σ 2λ σ Coulomb interaction 1 + + Hint = V q() ck+ q,σp c− qσ,,′ p σ′ ck ,σ c ∑∑ 2Ak,, p, σ q σ′ 2πe2 V() q= a) Self-energy orrectionsc to the dispersion ε 0q b) Exchange energy k a = min kmax Self-energy corrections n<nc n>nc 12 -2 nc =1.5x10 cm -->“exactly” filled Mexican hat Ferromagnetism Density fo states: 1 1 ρ() ε = π4 λ ε− min ε Stoner criterion: ε= ε( + 2 πn 2 λ ) F min σ (ρ ε F )U > 1 Ginzburg-Landau functional n= n++ − n m= + n− − n F a=()() n m2 + b4 n… + m Ginzburg-Landau functional 0.01 b(n) a(n) 0 0 A A -0.0001 -0.01 0.0002 -0.02 - -0.03 -0.0003 0 1 2 3 4 5 6 1 1.5 2 2.5 3 3.5 4 11 −2 11 −2 n [in 10 cm ] n [in 10 cm ] with self-energy correction m= n Ginzburg-Landau functional 0 F(m) A -2 -4 n =1 -6 n =5 n =2.5 -8 -10 0 2 4 6 11 −2 m [in 10 cm ] Polarizability “Mexican hat dispersion” 2 E( k )= (| k | −0 k ) High energy regime (b → 0) Asymptotic behaviour: −5 Im P +0. 3 1 2.5 ImP ( qω ,→ ) 2 ω 2 ω k ω 0 1.5 asiparticleQu lifetime: 1 Γ(ε ) ∝ ε | − ε | 0.5 F 0 0 0.5 1 1.5 2 2.5 3 q0 k Low-energy regime (ω ¡ b2) A) Forward scattering −0.5 Im P +0. Asymptotic behaviour 3 2.5 2 b2 ω 1.5 1 0.5 Perfect nesting at q=2b: 0 0 0.5 1 1.5 2 2.5 3 q b Friedel oscillations: cos(br 2 ) δn() r→ r 2 2 B) Backward scattering Low-energy regime (ω ¡ b ) −0.5 Im P +0. −0.5 Im P +0. 3 3 Friedel oscillations: 2.5 2.5 2 2 ω b2 ω b2 1.5 1.5 q→2 k0 + q 1 cos(1 2br ) cos( k0 r 2 ) δn() r → 2 0.5 0.5 r 0 0 -3 -2.5 -2 -1.5 -1 -0.5 0 0 0.5 1 1.5 2 2.5 3 q b q b Asymptotic behaviour: Perfect nesting: q=2k0 q=2k0-2b q=2k0+2b Example Numerical Numerical Analytical*1.5 Analytical/1.3 30 1,5 q=3b/2 q=2k0-b/2 20 1 -Im P -Im P 10 high-energy0,5 regime 0 0 024 024 2 2 ω/b ω/b 2 2 low-energyω/b regime ω/b 15 q=3b 1 q=2k0-3b 10 -Im P-Im P -Im P-Im P 0,5 5 0 0 0 5 10 15 5 0 5 10 15 20 2 2 ω/b ω/b Plasmon dispersion Random-phase approximation: (q ,ε )ω = 1 V− ( q ) Pω ( q , ) Plasmon dispersion: (ε q ,Ωq )= 0 2 DEG: Bilayer graphene: Summary 9 Biased bilayer graphene at low densities leads to a topologically non-trivial Fermi-surface. 9 At intermediate electronic densities, the one-band approximation becomes unstable. 9 Thegroundstateisunstabletowardferromagnetic ordering. 9 Including self-energy effects leads to a saturation in the magnetisation. 9 At low energies, the system is a Fermi-liquid, albeit with peculiar Friedel oscillations. 9 At high energies or low densities, the system shows non- Fermi liquid behavior. 9 The plasmons show the familiar two-dimensional square- root disperion, but with a larger energy scale..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us