Statistical Biophysics of Hematopoiesis and Growing Cell Populations

Statistical Biophysics of Hematopoiesis and Growing Cell Populations

Statistical biophysics of hematopoiesis and growing cell populations Nathaniel Vincent Mon P`ere Contents 1. Introduction 11 I. Population dynamics of hematopoiesis 19 2. Hematopoiesis: the factory for blood 21 2.1. A brief history of hematopoiesis . 22 2.2. Cellular differentiation . 25 2.2.1. Providing variety and specification . 25 2.2.2. Transitional states and cell fate . 28 2.2.3. The role of cell divisions in differentiation . 30 2.3. Hematopoietic lineages . 31 2.4. Hematopoietic stem cells . 31 2.5. Differentiational tissues accumulate mutations . 33 2.6. Open questions and perspectives . 34 3. Mathematical tools 37 3.1. Stochastic processes . 37 3.1.1. The Bernoulli process . 38 3.1.2. The Poisson process . 40 3.2. Markov Chains . 46 3.2.1. The state space . 47 3.2.2. Markov transition probabilties . 48 3.2.3. Discrete time Markov chains . 49 3 Contents 3.2.4. Continuous time Markov chains . 50 3.2.5. Non-discrete state spaces . 50 3.3. Stochastic population dynamics with Markov chains . 51 3.3.1. The birth-death process . 51 3.3.2. The Moran process . 53 3.4. summary . 55 4. Hematopoietic stem cells: a neutral stochastic population 57 4.1. The importance of stochasticity . 59 4.2. Assumptions for stochastic HSC dynamics . 60 4.2.1. Mutation rate . 64 4.2.2. Division rate . 64 4.3. Modeling the stochastic dynamics of a mutant clone . 65 4.3.1. A birth-death model (is not sufficient) . 65 4.3.2. A Moran model . 67 4.3.3. Moving to real time . 68 4.3.4. The diffusion approximation . 69 5. Evolutionary dynamics of paroxysmal nocturnal hemoglobinuria 73 5.1. Paroxysmal nocturnal hemoglobinuria . 73 5.2. Applying the Moran model . 76 5.2.1. Transition probabilities . 76 5.2.2. Ontogenic growth . 78 5.2.3. Observing multiple clones . 78 5.2.4. Parameter values and diagnosis threshold . 80 5.3. Results and predictions . 82 5.3.1. Probability and prevalence of PNH . 82 5.3.2. Average clone sizes . 85 5.3.3. Arrival times of mutated clone and clinical PNH . 85 5.3.4. Clonal expansion . 86 4 Contents 5.3.5. Disease reduction . 88 5.4. Discussion . 89 5.5. Perspective: HSCs under perturbed hematopoiesis . 91 5.5.1. Feedback driven division rates . 92 5.5.2. Heuristic results . 93 5.6. Conclusion . 96 6. Subclonal dynamics in hematopoietic stem cells 97 6.1. Clonality . 98 6.2. Moran model with asymmetric divisions . 100 6.3. Testing with simulations . 103 6.4. The single cell mutational burden . 104 6.4.1. Mutational burden as a compound Poisson process . 104 6.4.2. Markov chain approach . 106 6.4.3. Discussion: single cell mutatational burden . 108 6.5. The variant allele frequency spectrum (VAF) . 109 6.5.1. Dynamics of the VAF expected value . 110 6.5.2. Dynamics of the VAF variance . 111 6.5.3. Equilibrium distributions . 116 6.5.4. Discussion: VAF . 116 6.6. The sampling problem . 118 6.7. Applications to a human HSC dataset . 121 6.7.1. Data: somatic mutations in single HSCs . 121 6.7.2. Single cell mutational burden . 122 6.7.3. Variant allele frequency spectrum: fitting parameters with Ap- proximate Bayesion Computation . 122 6.7.4. Discussion: applications to a dataset . 127 6.8. Conclusions and perspective . 127 5 Contents 7. Feedback-driven compartmental dynamics of hematopoiesis 129 7.1. A compartmental model of hematopoiesis . 132 7.1.1. Dingli model . 132 7.1.2. Introducing feedback . 134 7.2. Analysis . 136 7.2.1. Sequential coupling elicits three types of behavior . 136 7.2.2. Increasing cell amplification between compartments reduces stability138 7.2.3. Recovery time as a measure of efficiency . 140 7.2.4. Inclusion of feedback allows prediction of erythrocyte dynamics . 140 7.2.5. Chronic perturbations lead to new equilibrium states . 143 7.3. Discussion and conclusions . 144 II. Statistical mechanics of proliferating cells 167 8. Cell movement as a stochastic process 169 8.1. Motility in cancer: a motivating example . 171 8.2. Cells as motile particles . 175 8.3. Basics of stochastic motion . 176 8.3.1. Brownian motion . 177 8.3.2. Generalizations and other models . 183 9. Stochastic motion under population growth 185 9.1. The problem of growth . 185 9.2. Brownian motion in an ideal gas . 186 9.2.1. Velocity correlation of the random walk . 187 9.3. Coupling the Brownian Langevin equation to the particle density . 189 9.3.1. Fixed density populations . 189 9.3.2. Growing populations . 190 9.3.3. Alternative types of motion . 191 6 Contents 9.4. Comparison of the Langevin equation with direct particle simulations . 192 9.4.1. Fixed density results . 193 9.4.2. Growing population results . 198 9.5. Perspective: localizing the LE for interacting particles . 198 9.6. Discussion . 200 10.Conclusions 213 10.1. Population dynamics of hematopoiesis . 213 10.2. Statistical mechanics of proliferating cells . 217 A. Population dynamics of hematopoiesis 221 A.1. Combining Poisson processes . 221 A.2. Simulations of the Moran model with mutant accumulation . 222 A.2.1. The cell population . 223 A.2.2. Events which alter the population . 223 A.2.3. Mutations . 224 A.2.4. Time evolution . 224 A.3. Obtaining the mean and variance of the compound Poisson distribution . 224 A.4. Compartment model of hematopoiesis: fixing parameter values . 225 B. Statistical mechanics of cell motion 227 B.1. Particle simulation . 227 B.1.1. Particle properties . 227 B.1.2. Particle collisions . 228 B.1.3. Confined space: minimum image periodic boundaries . 228 B.1.4. Accounting for center of mass drift . 228 B.1.5. Population growth . 229 B.1.6. Sketch of the simulation algorithm . 229 B.2. Numerically simulating the Langevin equation . 230 7.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us