Polyhedral Theory, Flows an D Ne Twork S CO@W Berlin

Polyhedral Theory, Flows an D Ne Twork S CO@W Berlin

Basics of polyhedral theory, flows an d ne twor ks CO@W Berlin Mar tin Gr ötschel 28.09.2015 Martin Grötschel . Institut für Mathematik, Technische Universität Berlin (TUB) . DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (MATHEON) . Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) [email protected] http://www.zib.de/groetschel 2 Graph Theory: Super Quick CO@W . Graph G=(V,E), nodes, edges e=ij . Digraph D=(V,A), nodes arcs a=(u,v) Concepts . Chain, walk, path, cycle, circuit . clique, stable set, matching . coloring, clique cover, clique partitioning, edge coloring . … . Optimization problems associated with these . Polynomial time solvability, NP-hardness I assume that this is known Martin Grötschel 3 Special „simple“ combinatorial optimization problems CO@W Finding a . minimum spanning tree in a graph . shtthortest pa thith in a ditddirected graph . maximum matching in a graph . minimum capacity cut separating two given nodes of a gpgraph or dig gpraph . cost-minimal flow through a network with capacities and costs on all edges . … These problems are solvable in polynomial time. Martin Grötschel 4 Special „hard“ combinatorial optimization problems CO@W . travelling salesman problem (the prototype problem) . location und routing . set-packing, partitioning, -covering . max-cut . linear ordering . scheduling (with a few exceptions) . node and edge colouring . … These problems are NP-hard (in the sense of complexity theory). Martin Grötschel 5 Contents CO@W 1. Linear programs 2. Polyhedra 3. Algorithms for ppyolyhedra - Fourier-Motzkin elimination - some Web resources 4. Semi-algebraic geometry 5. Faces of polyhedra 6. Flows, networks, min-max results 7. The travelling salesman ppypolytope Martin Grötschel 6 Contents CO@W 1. Linear programs 2. Polyhedra 3. Algorithms for ppyolyhedra - Fourier-Motzkin elimination - some Web resources 4. Semi-algebraic geometry 5. Faces of polyhedra 6. Flows, networks, min-max results 7. The travelling salesman ppypolytope Martin Grötschel 7 Linear Programming CO@W max cxT max cx11 cx 2 2... cxnn subject to Ax b ax ax... ax b 11 1 12 2 1nn 1 x 0 ax21 1 ax 22 2... ax 2nn b 2 . linear program in standard form axmm11 ax 2 2 ... ax mnnm b xx12, ,..., xn 0 Martin Grötschel 8 Linear Programming CO@W max cxT linear max cxT program Axb Ax b in standard Axb x 0 form x 0 linear max cxT program max cxTT cx Axb in AxAxIsb “polyhedralpolyhedral form” xxs,, 0 ()x xx Martin Grötschel 9 Contents CO@W 1. Linear programs 2. Polyhedra 3. Algorithms for ppyolyhedra - Fourier-Motzkin elimination - some Web resources 4. Semi-algebraic geometry 5. Faces of polyhedra 6. Flows, networks, min-max results 7. The travellinggpyp salesman polytope Martin Grötschel 10 A Polytope in the Plane CO@W Martin Grötschel 11 A Polytope in 3 -dimensional space CO@W Martin Grötschel 12 „beautiful“ polyehedra CO@W •a tetrahedron, •a cube , •an octahedron, •a dodecahedron, •an icosahedron, •a cuboctahedron, •an icosidodecahedron, and •a rhombitruncated cuboctahedron. Martin Grötschel 13 “Real” polyhedra CO@W Martin Grötschel 14 Rhombicuboctahedron CO@W Herrnhuter Stern Germany’s most popular Christmas star Martin Grötschel 15 Crystallographic classifications CO@W http://de. wikipedia.org/wiki/Kristallmorphologie Martin Grötschel 16 Polyhedra-Poster http://www.peda .com/posters/Welcome . html CO@W PtPoster which di spl ays all convex polyhedra with regular polygonal faces Martin Grötschel 17 http://www.eg-models.de/ CO@W Martin Grötschel 18 http://www.ac-noumea.nc/maths/amc/polyhedr/index_.htm CO@W Martin Grötschel 19 CO@W Martin Grötschel 20 Kepler’s solar system CO@W Martin Grötschel 21 Polyhedra have fascinated people during all periods of our history CO@W . book illustrations . magic objects . pieces of art . objjyyects of symmetry . models of the universe Martin Grötschel 22 Definitions CO@W Linear programming lives (for our purposes) in the n-dimensional real (in patiepractice: rational) vetoector spac e. convex polyhedral cone: conic combination (i. e ., nonnegative linear combination or conical hull) of finitely many points K = cone(E), E a finite set in n. polytope: convex hull of finitely many points: P = conv(V), V a finite set in n. polyhedron: intersection of finitely many halfspaces Px{|}Rn Axb Martin Grötschel 23 Important theorems of polyhedral theory (LP -view) CO@W When is a polyhedron nonempty? Martin Grötschel 24 Important theorems of polyhedral theory (LP -view) CO@W When is a polyhedron nonempty? The Farkas-Lemma (1908): A polyhedron defined by an inequality system Ax b is empty, if and only if there is a vector y such that yy0,,,TTTTA 0 , y b 0 Theorem of the alternative Martin Grötschel 25 Important theorems of polyhedral theory (LP -view) CO@W Which forms of representation do polyhedra have? Martin Grötschel 26 Important theorems of polyhedral theory (LP -view) CO@W Which forms of representation do polyhedra have? Minkowski (1896), Weyl (1935), Steinitz (1916) Motzkin (1936) Theorem: For a subset P of R n the following are equivalent: (1) P is a polyhedron. (2) P is the intersection of finitely many halfspaces , i. e., there exist a matrix A und ein vector b with Px{|}Rn Axb . (exterior representation) (3) P is the sum of a convex polytope and a finitely generated (polyhedral) cone , i .e ., there exist finite sets V and E with P conv(V)+cone (E). (interior representation ) Martin Grötschel 27 Representations of polyhedra CO@W Carathéodory‘s Theorem (1911), 1873 Berlin – 1950 München Let xP conv(V)+cone(E) , there exist s vv00,...,ssi V, ,...,R , 1 i0 and est1 ,...,e E, s+1 ,..., t R with t n such that s t x iive+ i i i1i1is1=s+1 Martin Grötschel 28 Representations of polyhedra CO@W (1) - x2 <= 0 The -representation (2) -x1 -x2<2 <=-1 ()(exterior representation) (3) - x1 + x2 <= 3 (4) + x1 <= 3 (5)+x1+2x2<=9(5) + x1 + 2x2 <= 9 Ax b (4) (1) Martin Grötschel 29 Representations of polyhedra CO@W The -representation (interior representation) P conv(V)+cone(E). P V E Martin Grötschel 30 Example: the Tetrahedron CO@W 01 00 yconv 0,0,1,0 0001 yyy1231 0 y 0 0 1 1 y 0 0 2 1 1 0 0 0 0 Martin 0 y 0 Grötschel 0 3 31 Example: the cross polytope CO@W 2n points n P conv eii, e | i 1,..., n R Martin Grötschel 32 Example: the cross polytope CO@W 2n points n P conv eii, e | i 1,..., n R 2n inequalities n T n Px R |1 ax a 1,1 Martin Grötschel 33 Example: the cross polytope CO@W 2n points n P conv eii, e | i 1,..., n R The “power” of |.|. n n Px R |1 xi i1 2n inequalities n T n Px R |1 ax a 1,1 Martin Grötschel 34 All 3-dimensional 0/1-polytopes CO@W Martin Grötschel 35 Contents CO@W 1. Linear programs 2. Polyhedra 3. Alggpyorithms for polyhedra - Fourier-Motzkin elimination - some Web resources 4. Semi-algebraic geometry 5. Faces of polyhedra 6. Flows, networks, min-max results Martin Grötschel 36 Polyedra in linear programming CO@W . The solution sets of linear programs are polyhedra. If a polyhedron P conv(V)+cone(E) is given explicitly via finite sets V und E, linear programming is trivial. In linear programming, polyhedra are always given in -representation. Each solution method has its „standard form“. Martin Grötschel 37 Fourier-Motzkin Elimination CO@W . Fourier, 1847 . Motzkin, 1938 . Method: successive projection of a polyhedron in n- dimensional space into a vector space of dimension n-1 by elimination of one variable. Projection on y: (0,y) Martin Projection on x: (x,0) Grötschel 38 AFourierA Fourier-Motzkin step CO@W 0 â1 . 1 a1 + . 1 . -1 al + . 0 ân -1 am 0 b1 0 b1 . copy . 0 bk 0 bk Martin Grötschel 39 Fourier-Motzkin elimination proves the Farkas Lemma CO@W When is a polyhedron nonempty? The Farkas-Lemma (1908): A polyhedron defined by an inequality system Ax b is empty, if and only if there is a vector y such that yy0,,,TTTTA 0 , y b 0 Martin Grötschel 40 Fourier-Motzkin Elimination: an example CO@W min/max + x1 + 3x2 (1) - x2 <= 0 (2) - x1 - x2 <=-1 (3) - x1 + x2 <= 3 (4)+x1(4) + x1 <= 3 (5) + x1 + 2x2 <= 9 (4) (1) Martin Grötschel 41 Fourier-Motzkin Elimination: an example CO@W (1) - x2 <= 0 (2) - x1 - x2 <=-8 (3) - x1 + x2 <= 3 (4)+x1(4) + x1 <= 3 (5) + x1 + 2x2 <= 9 (4) (1) Martin Grötschel 42 Fourier-Motzkin Elimination: an example, call of PORTA CO@W DIM = 3 INEQUALITIES_SECTION (1) - x2 <= 0 (1) - x2 <= 0 (2) - x1 - x2 <=-8 (2) - x1 - x2 <=-8 (3) - x1 + x2 <= 3 (3) - x1 + x2 <= 3 (4) + x 1 <= 3 (4) + x 1 <= 3 (5) + x1 + 2x2 <= 9 (5) + x1 + 2x2 <= 9 ELIMINATION_ORDER 1 0 Martin Grötschel 43 Fourier-Motzkin Elimination: an example, call of PORTA CO@W DIM = 3 DIM = 3 INEQUALITIES_SECTION INEQUALITIES_SECTION (1) (1) -x202 <= 0 (1) - x2 <= 0 (2,4) (2) - x2 <= -5 (2) - x1 - x2 <=-8 (2,5) (3) + x2 <= 1 (3) - x1 + x2 <= 3 (3,4) (4) + x 2 <= 6 (4) + x 1 <= 3 (3,5) (5) + x2 <= 4 (5) + x1 + 2x2 <= 9 ELIMINATION_ORDER 1 0 Martin Grötschel 44 Fourier-Motzkin Elimination: an example, call of PORTA CO@W DIM = 3 DIM = 3 INEQUALITIES_SECTION INEQUALITIES_SECTION (1) (1) -x202 <= 0 (2,3) 0 <= -4 (2,4) (2) - x2 <= -5 (2,5) (3) + x2 <= 1 (3,4) (4) + x 2 <= 6 (3,5) (5) + x2 <= 4 ELIMINATION_ORDER 0 1 Martin Grötschel 45 Fourier-Motzkin elimination proves the Farkas Lemma CO@W When is a polyhedron nonempty? The Farkas-Lemma (1908): A polyhedron defined by an inequality system Ax b is empty, if and only if there is a vector y such that yy0,,,TTTTA 0 , y b 0 Martin Grötschel 46 Which LP solvers are used in practice? CO@W .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    123 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us