Introduction to Artificial Intelligence Informed Search

Introduction to Artificial Intelligence Informed Search

Introduction to Artificial Intelligence Informed Search Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM – p.1 Outline Best-first search ∗ A search Heuristics B. Beckert: KI für IM – p.2 Review: Tree search function TREE-SEARCH( problem, fringe) returns a solution or failure fringe INSERT(MAKE-NODE(INITIAL-STATE[problem]),fringe) loop do if fringe is empty then return failure node REMOVE-FIRST(fringe) if GOAL-TEST[problem] applied to STATE(node) succeeds then return node else fringe INSERT-ALL(EXPAND(node, problem), fringe) end Strategy Defines the order of node expansion B. Beckert: KI für IM – p.3 Best-first search Idea Use an evaluation function for each node (estimate of “desirability”) Expand most desirable unexpanded node Implementation fringe is a queue sorted in decreasing order of desirability Special cases Greedy search ∗ A search B. Beckert: KI für IM – p.4 Romania with step costs in km Straight−line distance Oradea 71 to Bucharest Neamt Arad 366 Bucharest 0 Zerind 87 75 151 Craiova 160 Iasi Dobreta 242 Arad 140 Eforie 161 92 Fagaras 178 Sibiu Fagaras 99 Giurgiu 77 118 Hirsova 151 80 Vaslui Iasi 226 Rimnicu Vilcea Timisoara Lugoj 244 142 Mehadia 241 111 211 Neamt 234 Lugoj 97 Pitesti Oradea 380 70 98 Pitesti 98 146 85 Hirsova Mehadia 101 Urziceni Rimnicu Vilcea 193 75 138 86 Sibiu 253 Bucharest Timisoara 329 120 Dobreta 90 Urziceni 80 Craiova Eforie Vaslui 199 Giurgiu Zerind 374 B. Beckert: KI für IM – p.5 Greedy search Heuristic Evaluation function h(n) = estimate of cost from n to goal Greedy search expands the node that appears to be closest to goal Example hSLD(n) = straight-line distance from n to Bucharest Note Unlike uniform-cost search the node evaluation function has nothing to do with the nodes explored so far B. Beckert: KI für IM – p.6 Greedy search: Example Romania Arad 366 B. Beckert: KI für IM – p.7 Greedy search: Example Romania Arad Sibiu Timisoara Zerind 253 329 374 B. Beckert: KI für IM – p.7 Greedy search: Example Romania Arad Sibiu Timisoara Zerind 329 374 Arad Fagaras Oradea Rimnicu Vilcea 366 176 380 193 B. Beckert: KI für IM – p.7 Greedy search: Example Romania Arad Sibiu Timisoara Zerind 329 374 Arad Fagaras Oradea Rimnicu Vilcea 366 380 193 Sibiu Bucharest 253 0 B. Beckert: KI für IM – p.7 No Can get stuck in loops Example: Iasi to Oradea Iasi ! Neamt ! Iasi ! Neamt ! ··· Complete in finite space with repeated-state checking O(bm) O(bm) No Note Worst-case time same as depth-first search, Worst-case space same as breadth-first But a good heuristic can give dramatic improvement Greedy search: Properties Complete Time Space Optimal B. Beckert: KI für IM – p.8 O(bm) O(bm) No Note Worst-case time same as depth-first search, Worst-case space same as breadth-first But a good heuristic can give dramatic improvement Greedy search: Properties Complete No Can get stuck in loops Example: Iasi to Oradea Iasi ! Neamt ! Iasi ! Neamt ! ··· Complete in finite space with repeated-state checking Time Space Optimal B. Beckert: KI für IM – p.8 O(bm) No Note Worst-case time same as depth-first search, Worst-case space same as breadth-first But a good heuristic can give dramatic improvement Greedy search: Properties Complete No Can get stuck in loops Example: Iasi to Oradea Iasi ! Neamt ! Iasi ! Neamt ! ··· Complete in finite space with repeated-state checking Time O(bm) Space Optimal B. Beckert: KI für IM – p.8 No Note Worst-case time same as depth-first search, Worst-case space same as breadth-first But a good heuristic can give dramatic improvement Greedy search: Properties Complete No Can get stuck in loops Example: Iasi to Oradea Iasi ! Neamt ! Iasi ! Neamt ! ··· Complete in finite space with repeated-state checking Time O(bm) Space O(bm) Optimal B. Beckert: KI für IM – p.8 Note Worst-case time same as depth-first search, Worst-case space same as breadth-first But a good heuristic can give dramatic improvement Greedy search: Properties Complete No Can get stuck in loops Example: Iasi to Oradea Iasi ! Neamt ! Iasi ! Neamt ! ··· Complete in finite space with repeated-state checking Time O(bm) Space O(bm) Optimal No B. Beckert: KI für IM – p.8 Greedy search: Properties Complete No Can get stuck in loops Example: Iasi to Oradea Iasi ! Neamt ! Iasi ! Neamt ! ··· Complete in finite space with repeated-state checking Time O(bm) Space O(bm) Optimal No Note Worst-case time same as depth-first search, Worst-case space same as breadth-first But a good heuristic can give dramatic improvement B. Beckert: KI für IM – p.8 ∗ A search Idea Avoid expanding paths that are already expensive Evaluation function f (n) = g(n) + h(n) where g(n) = cost so far to reach n h(n) = estimated cost to goal from n f (n) = estimated total cost of path through n to goal B. Beckert: KI für IM – p.9 Also required h(n) ≥ 0 for all n In particular: h(G) = 0 for goal G Example Straight-line distance never overestimates the actual road distance ∗ A search: Admissibility Admissibility of heuristic h(n) is admissible if ∗ h(n) ≤ h (n) for all n ∗ where h (n) is the true cost from n to goal B. Beckert: KI für IM – p.10 Example Straight-line distance never overestimates the actual road distance ∗ A search: Admissibility Admissibility of heuristic h(n) is admissible if ∗ h(n) ≤ h (n) for all n ∗ where h (n) is the true cost from n to goal Also required h(n) ≥ 0 for all n In particular: h(G) = 0 for goal G B. Beckert: KI für IM – p.10 ∗ A search: Admissibility Admissibility of heuristic h(n) is admissible if ∗ h(n) ≤ h (n) for all n ∗ where h (n) is the true cost from n to goal Also required h(n) ≥ 0 for all n In particular: h(G) = 0 for goal G Example Straight-line distance never overestimates the actual road distance B. Beckert: KI für IM – p.10 ∗ A search: Admissibility Theorem ∗ A search with admissible heuristic is optimal B. Beckert: KI für IM – p.11 ∗ A search example Arad 366=0+366 B. Beckert: KI für IM – p.12 ∗ A search example Arad Sibiu Timisoara Zerind 393=140+253 447=118+329 449=75+374 B. Beckert: KI für IM – p.12 ∗ A search example Arad Sibiu Timisoara Zerind 447=118+329 449=75+374 Arad Fagaras Oradea Rimnicu Vilcea 646=280+366 415=239+176 671=291+380 413=220+193 B. Beckert: KI für IM – p.12 ∗ A search example Arad Sibiu Timisoara Zerind 447=118+329 449=75+374 Arad Fagaras Oradea Rimnicu Vilcea 646=280+366 415=239+176 671=291+380 Craiova Pitesti Sibiu 526=366+160 417=317+100 553=300+253 B. Beckert: KI für IM – p.12 ∗ A search example Arad Sibiu Timisoara Zerind 447=118+329 449=75+374 Arad Fagaras Oradea Rimnicu Vilcea 646=280+366 671=291+380 Sibiu Bucharest Craiova Pitesti Sibiu 591=338+253 450=450+0 526=366+160 417=317+100 553=300+253 B. Beckert: KI für IM – p.12 ∗ A search example Arad Sibiu Timisoara Zerind 447=118+329 449=75+374 Arad Fagaras Oradea Rimnicu Vilcea 646=280+366 671=291+380 Sibiu Bucharest Craiova Pitesti Sibiu 591=338+253 450=450+0 526=366+160 553=300+253 Bucharest Craiova Rimnicu Vilcea 418=418+0 615=455+160 607=414+193 B. Beckert: KI für IM – p.12 ∗ A search: f -contours ∗ A gradually adds “ f -contours” of nodes O N Z I A 380 S F V 400 T R L P H M U B 420 D E C G B. Beckert: KI für IM – p.13 ∗ Optimality of A search: Proof Start n G G2 Suppose a suboptimal goal G2 has been generated Let n be an unexpanded node on a shortest path to an optimal goal G f (G2) = g(G2) since h(G2) = 0 > g(G) since G2 suboptimal = g(n) + h∗(n) ≥ g(n) + h(n) since h is admissible = f (n) ∗ Thus, A never selects G2 for expansion B. Beckert: KI für IM – p.14 Yes (unless there are infinitely many nodes n with f (n) ≤ f (G)) Exponential in [relative error in h × length of solution] Same as time Yes Note ∗ ∗ A expands all nodes with f (n) < C ∗ ∗ A expands some nodes with f (n) = C ∗ ∗ A expands no nodes with f (n) > C ∗ A search: Properties Complete Time Space Optimal B. Beckert: KI für IM – p.15 Exponential in [relative error in h × length of solution] Same as time Yes Note ∗ ∗ A expands all nodes with f (n) < C ∗ ∗ A expands some nodes with f (n) = C ∗ ∗ A expands no nodes with f (n) > C ∗ A search: Properties Complete Yes (unless there are infinitely many nodes n with f (n) ≤ f (G)) Time Space Optimal B. Beckert: KI für IM – p.15 Same as time Yes Note ∗ ∗ A expands all nodes with f (n) < C ∗ ∗ A expands some nodes with f (n) = C ∗ ∗ A expands no nodes with f (n) > C ∗ A search: Properties Complete Yes (unless there are infinitely many nodes n with f (n) ≤ f (G)) Time Exponential in [relative error in h × length of solution] Space Optimal B. Beckert: KI für IM – p.15 Yes Note ∗ ∗ A expands all nodes with f (n) < C ∗ ∗ A expands some nodes with f (n) = C ∗ ∗ A expands no nodes with f (n) > C ∗ A search: Properties Complete Yes (unless there are infinitely many nodes n with f (n) ≤ f (G)) Time Exponential in [relative error in h × length of solution] Space Same as time Optimal B.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    45 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us