Duality in Waldhausen Categories

Duality in Waldhausen Categories

Forum Math. 1 0 ( 1 9 9 8 ) , 5 3 3 — 6 0 3 Forum Mathematicu m © d e G r u y t e r 1 9 9 8 Duality i n Wa l d h a u s e n Ca t e g o r i e s Michael We i s s and Bruce Williams (Communicate d b y An d r e w Ra n i c k i ) A b s t r a c t . W e d e v e l o p a th e o r y o f Spanier-Whitehea d du a l i t y i n ca t e g o r i e s wi t h cofibration s a n d we a k equivalence s (Waldhause n categories , fo r short). Th i s in c l u d e s L-theory, the i n v o ¬ l u t i o n o n K - t h e o r y introduced b y [V o ] i n a sp e c i a l ca s e , an d a map Ξ re l a t i n g L-theory to t h e Ta t e sp e c t r u m o f $ ac t i n g o n K-theory. Th e map Ξ i s a distillatio n o f th e lo n g ex a c t Rothenberg se q u e n c e s [Sha], [Ra1], [Ra2], in c l u d i n g an a l o g s in v o l v i n g hi g h e r K-groups. It g o e s b a c k to [WW2] i n s p e c i a l c a s e s . A m o n g the e x a m p l e s c o v e r e d he r e , but not i n [WW2], a r e ca t e g o r i e s o f re t r a c t i v e sp a c e s wh e r e th e notion o f we a k equivalenc e in v o l v e s control. 1 9 9 1 Mathematic s Su b j e c t Classification : 19 D 1 0 , 57 N 6 5 , 5 7 R 6 5 . 0 . Introductio n For an y ri n g R, Qu i l l e n has de f i n e d a n algebraic K-theory Ω - s p e c t r u m , $. Hi s construction i s i n terms o f the category o f finitely ge n e r a t e d pr o j e c t i v e mo d u l e s o v e r R, but i t ca n b e a p p l i e d to an y ex a c t category. I n order to st u d y concordances o f m a n i f o l d s Wa l d h a u s e n generalize d Qu i l l e n ’ s construction to ap p l y to what W a l d ¬ h a u s e n ca l l s ca t e g o r i e s wi t h co f i b r a t i o n s an d we a k eq u i v a l e n c e s . (F o l l o w i n g Thomason w e wi l l ca l l th e m Wa l d h a u s e n categories. ) A n ex a m p l e i s gi v e n b y the c a t e g o r y o f ba s e d compact CW - s p a c e s . More ge n e r a l l y , the ca t e g o r y o f retractive r e l a t i v e CW - s p a c e s $ o v e r a fixed s p a c e X, wi t h compact quotient Y/X, i s an e x a m p l e o f a Wa l d h a u s e n ca t e g o r y ; it s K-theory sp e c t r u m i s kn o w n a s $. W a l d h a u s e n su p p l i e d se v e r a l po w e r f u l tools al o n g wi t h hi s construction o f $ f o r a Wa l d h a u s e n ca t e g o r y $, su c h a s the additivity theorem, the approximation theorem, and the ge n e r i c fibration theorem. Ev e n i f on e i s primarily in t e r e s t e d i n t h e algebraic K-theory o f ri n g s th e s e tools ha v e important applications [Sta], 1 Bo t h a u t h o r s s u p p o r t e d i n p a r t b y N S F g r a n t . 5 3 4 M . W e i s s , B . W i l l i a m s [Tho2]. Also i n [CPed] ex c i s i o n in controlled algebraic K-theory o f rings i s proved using Waldhausen’s machinery. Suppose that R i s a ring with involution (involutory anti-automorphism). The problem o f cl a s s i f y i n g manifolds up to homeomorphism or diffeomorphism lead W a l l to de f i n e algebraic L-groups Ln(R) in terms o f quadratic forms on finitely generated projective (or fr e e , or based fr e e ) modules over R. The L-groups turned out to be the homotopy groups o f a spectrum [Q]. Ranicki [Ra3] associates such L-theory spectra to any additive category with chain duality. (There i s a quadratic L-theory spectrum made using quadratic forms, and a symmetric L-theory spectrum made using symmetric forms.) Specifically , by using additive categories o f “modules parametrized b y a simplicial complex” Ranicki gave an algebraic description o f Quinn’s L-theory assembly map which i s us e d to cl a s s i f y manifolds up to ho m e o ¬ morphism. Also Ranicki’s chain duality setup has been used to construct controlled versions o f L-theory fo r rings [FP]. The assembly map i n L-theory can then also b e id e n t i f i e d with a forget control map. This has been used to prove many cases o f the Novikov conjecture; se e [FRR]. I f one wants to study the spaces o f homeomorphisms or diffeomorphisms o f a manifold, then the L-theory o f rings or ev e n additive categories i s not adequate. One i s fo r c e d to consider L-theory and K-theory o f certain Waldhausen categories equipped with duality, and a certain map Ξ relating the L-theory to the K-theory. For this reason w e need a theory o f duality in Waldhausen categories which, unlike Ranicki’s chain duality theory, allows “nonlinear” cases; and w e need to understand, i n this generality, L-theory, K-theory, and the Ξ-map. Waldhausen categories o f retractive spaces where the notion o f weak equivalence involves control are important i n applications to geometry and should therefore b e the central examples o f such a theory. T o explain what Ξ i s about, w e note that many o f the classical invariants fo r symmetric forms over a ring R take values i n groups constructed fr o m Ki (R) where i = 0,1, or 2. This suggests that there should b e a connection between the symmetric L-theory spectrum $ and the algebraic K-theory spectrum $. S i n c e the classical constructions o f L-theory are modelled on the pre-Quillen definitions o f “ l o w dimensional K-theory”, the connection i s hidden. In [WW2] w e established the connection b y constructing Ξ, a natural map fr o m $ to the Tate spectrum f o r $ acting on $. A nonlinear version o f this does already appear i n [WW2], but i t i s ve r y limited and there i s no mention o f “control”. But i t was certainly motivated b y our study o f spaces o f homeomorphisms. In this paper w e introduce the notion o f a Spanier-Whitehead product $ on a Waldhausen category $. This i s a functor $ f r o m $ to pointed spaces. The space $ should be thought o f as the space o f pairings between C and D. I f $ s a t i s f i e s certain axioms listed i n §2, reminiscent o f Spanier-White- D u a l i t y i n W a l d h a u s e n c a t e g o r i e s 5 3 5 h e a d duality, then fo r ev e r y C i n $ there ex i s t s an essentiall y unique ob j e c t C i n $ wh i c h co m e s w i t h a nondegenerate pairing $.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    72 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us