Wetting and Interfacial Water Analysis of Selected Mineral

Wetting and Interfacial Water Analysis of Selected Mineral

WETTING AND INTERFACIAL WATER ANALYSIS OF SELECTED MINERAL SURFACES AS DETERMINED BY MOLECULAR DYNAMICS SIMULATION AND SUM FREQUENCY VIBRATIONAL SPECTROSCOPY by Jiaqi Jin A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Metallurgical Engineering The University of Utah May 2016 Copyright © Jiaqi Jin 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jiaqi Jin has been approved by the following supervisory committee members: Jan D. Miller Chair Dec 21, 2015 Date Approved Xuming Wang Member Dec 21, 2015 Date Approved Michael L. Free Member Dec 21, 2015 Date Approved Vladimir Hlady Member Dec 21, 2015 Date Approved Liem X. Dang Member Dec 21, 2015 Date Approved and by Manoranjan Misra Chair/Dean of the Department/College/School o f ____________Metallurgical Engineering and by David B. Kieda, Dean of The Graduate School. ABSTRACT In this dissertation research, Molecular Dynamics Simulation (MDS), Sum Frequency Vibrational Spectroscopy (SFVS), and contact angle measurement have been used to investigate the wettability and interfacial water structure at selected mineral surfaces. The primary objective is to provide fundamental understanding of the hydrophobic surface state, a state of special interest in particle separations by froth flotation. First, MDS interfacial water features, including water number density profile, water residence time, water dipole orientation, and hydrogen bonding analysis, at selected hydrophobic mineral surfaces (graphite (001) surface and octadecyltrichlorosilane (OTS) monolayer on quartz) and at selected hydrophilic mineral surfaces (quartz (001), sapphire (001), and gibssite (001) surfaces) have been evaluated and compared to the corresponding SFVS experimental results. A “water exclusion zone” of 3 A accounts for the “free OH” vibration (from both MDS water dipole orientation analysis and SFVS spectrum) at hydrophobic surfaces. In addition, a water residence time of less than 10 ps and about 2 hydrogen bonds have been found for surface water molecules at the selected hydrophobic mineral surfaces. Sessile drop wetting characteristics of the hydrophobic molybdenite (001) surface and the hydrophilic quartz (001) surface have been examined by MDS and by contact angle experiments to determine the effect of drop size, advancing/receding contact angles, and spreading time on wettability. In addition, film stability and bubble attachment at the hydrophobic molybdenite (001) surface and the hydrophilic quartz (001) surface have been studied by MDS for the first time and the results compared with corresponding experimental captive bubble contact angles. At the hydrophobic molybdenite (001) surface, the water film is unstable and ruptures, while the water film at the hydrophilic quartz (001) surface does not. Finally, the wettability and interfacial water features of sulfide/telluride mineral surfaces have been described with MDS for the first time. The interfacial water features of selected sulfide/telluride mineral surfaces under anaerobic conditions have been 2 + examined, as well as Cu activated sphalerite (110) and oxidized pyrite (100) surfaces, to determine which interfacial water features best identify the wetting characteristics of the selected mineral surfaces. In summary, it has been found that “water exclusion zone” and “free OH” vibration present for hydrophobic mineral surfaces, whereas, for hydrophilic mineral surfaces, the interfacial water is characterized by hydrogen bonding with the surface and relatively long water residence time. The interfacial water analysis of the selected mineral surfaces increases our fundamental understanding of the flotation chemistry associated with the mineral systems and is expected to provide a foundation for improved flotation technology in the future. iv TABLE OF CONTENTS ABSTRACT.................................................................................................................................iii LIST OF TABLES................................................................................................................... viii LIST OF FIGURES......................................................................................................................x ACKNOWLEDGEMENTS...................................................................................................... xv CHAPTERS 1. INTRODUCTION................................................................................................................. 1 1.1 Froth Flotation of Sulfide/Telluride Minerals........................................................ 1 1.2 Froth Flotation of Oxide M inerals.......................................................................... 3 1.3 Hydrophobicity of Mineral Surfaces......................................................................4 1.4 Interfacial W ater........................................................................................................6 1.4.1 SFVS................................................................................................................ 6 1.4.2 M D S ................................................................................................................ 9 1.5 Research Objectives................................................................................................12 2. EXPERIMENTAL CONTACT ANGLE METHODS................................................... 16 2.1 General Procedures.................................................................................................16 2.1.1 Sessile Drop Measurement.........................................................................16 2.1.2 Captive Bubble Measurement................................................................... 17 2.2 Preparation of Selected Mineral Surfaces............................................................17 2.2.1 Oxide Surfaces.............................................................................................18 2.2.2 Hydrophobic Quartz Surface......................................................................19 2.2.3 Sulfide/Telluride Surfaces under Anaerobic Conditions........................19 2.2.4 Oxidized Pyrite (100) Surface................................................................... 21 2.2.5 Cu2+ Activated Sphalerite (110) Surface..................................................22 3. MOLECULAR DYNAMIC SIMULATION PROCEDURES...................................... 24 3.1 Potential Energy...................................................................................................... 24 3.2 Force Fields.............................................................................................................. 25 3.3 Crystal Structures.................................................................................................... 28 3.4 Interfacial Water Analysis.....................................................................................31 3.4.1 Number Density Profile.............................................................................. 33 3.4.2 Water Dipole Orientation ........................................................................... 34 3.4.3 Water Residence T im e................................................................................35 3.4.4 Hydrogen Bonding Analysis......................................................................36 3.5 MDS Contact Angles..............................................................................................37 3.5.1 Sessile Drop..................................................................................................37 3.5.2 Film Stability and Bubble Attachment..................................................... 40 4. MDS INTERFACIAL WATER FEATURES................................................................. 43 4.1 Selected Hydrophobic Surfaces............................................................................ 43 4.1.1 Water Exclusion Zone.................................................................................44 4.1.2 Number Density Profile.............................................................................. 46 4.1.3 Water Dipole Orientation........................................................................... 48 4.1.4 Water Residence Tim e................................................................................49 4.1.5 Hydrogen Bonding Analysis......................................................................50 4.2 Selected Hydrophilic Surfaces.............................................................................. 52 4.2.1 Water Exclusion Zone.................................................................................53 4.2.2 Number Density Profile.............................................................................. 55 4.2.3 Water Dipole Orientation........................................................................... 57 4.2.4 Water Residence T im e................................................................................59 4.2.5 Hydrogen Bonding Analysis......................................................................61 4.3 Summary.................................................................................................................. 63 5. SUM FREQUENCY VIBRATIONAL SPECTROSCOPY.......................................... 65 5.1 Internal Reflection.................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    204 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us