Divalent Transition Metals and Magnesium in Structures That Contain the Autunite-Type Sheet

Divalent Transition Metals and Magnesium in Structures That Contain the Autunite-Type Sheet

1699 The Canadian Mineralogist Vol. 42, pp. 1699-1718 (2004) DIVALENT TRANSITION METALS AND MAGNESIUM IN STRUCTURES THAT CONTAIN THE AUTUNITE-TYPE SHEET ANDREW J. LOCOCK§ Mineralogy, Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada PETER C. BURNS Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, U.S.A. THEODORE M. FLYNN Department of Geology, University of Illinois, Urbana–Champaign, Illinois 61801, U.S.A. ABSTRACT Compounds that contain the autunite-type sheet and divalent cations (Mg, Mn, Fe, Co, Ni) in their interlayers have been synthesized by diffusion in gels or by hydrothermal methods, and their crystal structure determined. Data on single-crystal X-ray- diffraction intensities were collected at room temperature using MoK␣ radiation and a CCD-based area detector. The autunite- – type sheet has the composition [(UO2)(XO4)] , X = P or As, and involves the sharing of equatorial vertices of uranyl square bipyramids with phosphate or arsenate tetrahedra. The interlayer region contains H2O groups and cations in octahedral coordina- tion. The sheets are linked by hydrogen bonding and through bonds from the interlayer cations to oxygen atoms of the sheets. The structural roles of the interlayer cations in determining the symmetries and hydration states observed are discussed. Three differ- ent hydration states are observed, and these have characteristic symmetries and basal d-values: dodecahydrates are triclinic (pseudomonoclinic), basal spacing ~11 Å; decahydrates are monoclinic (pseudo-orthorhombic and commonly twinned), basal spacings ~10 Å, and octahydrates are triclinic, basal spacings of ~8.7 Å. Each hydration state corresponds to a different structure- type; the H2O of hydration of these compounds does not vary in the same fashion as the H2O content of zeolites, but rather is required to maintain the integrity of the hydrogen-bonding network. Changes in hydration state, whether through– dehydration or rehydration, give rise to separate structures. Crystallographic data: Mn[(UO2)(AsO4)]2(H2O)12: triclinic P1, a 7.1359(11), b c ␣ ° ␤ ° ␥ ° R i.e. 7.1439(11), 11.3616(17) Å,– 81.592(3) , 81.639(3) , 88.918(3) , 1 = 3.3%; Co[(UO2)(AsO4)]2(H2O)12 ( , synthetic P a b c ␣ ° ␤ ° ␥ ° R “kirchheimerite”): triclinic 1, 7.1552(5), 7.1586(5), 11.2912(8)– Å, 81.487(2) , 81.410(2) , 88.891(2) , 1 = 5.1%; i.e. P a b c ␣ ° ␤ Mg[(UO2)(AsO4)]2(H2O)12 ( , synthetic nováˇcekite I): triclinic 1, 7.1594(5),– 7.1610(5), 11.3146(7) Å, 81.391(2) , ° ␥ ° R P a b c ␣ 81.177(1) , 88.884(1) , 1 = 4.3%; Ni[(UO2)(AsO4)]2(H2O)12: triclinic 1, 7.1523(3),– 7.1583(3), 11.2564(5) Å, 81.549(1)°, ␤ 81.356(1)°, ␥ 88.916(1)°, R1 = 2.7%; Ni[(UO2)(PO4)]2(H2O)12: triclinic P1, a 6.9962(15), b 7.0012(15), c 11.171(2) Å, ␣ 81.591(4)°, ␤ 82.189(4)°, ␥ 88.721(4)°, R1 = 3.2%; Mn[(UO2)(PO4)]2(H2O)10: monoclinic I2/m, a 6.9656(4), b 20.3768(13), c 6.9775(4) Å, ␤ 91.019(1)°, R1 = 2.7%; Co[(UO2)(PO4)]2(H2O)10: monoclinic P21/n, a 6.9490(5), b 19.9348(16), c 6.9620(5) Å, ␤ 90.440(2)°, R1 = 5.1%; Ni[(UO2)(PO4)]2(H2O)10: monoclinic P21/n, a 6.9506(4), b 19.8215(11), c 6.9711(4) Å, ␤ 90.418(1)°, R i.e. P n a b c 1 = 3.1%; Mg[(UO2)(AsO4)]2(H2O)10 ( , synthetic nováˇcekite II):– monoclinic 21/ , 7.1328(11), 20.085(3), 7.1569(11) ␤ ° R P a b c ␣ ° ␤ Å, 90.585(3) , 1 = 8.5%; Mn[(UO2)(AsO4)]2(H2O)8: triclinic 1, 7.2244(5), 9.9170(8), 13.337(1) Å,– 75.012(2) , 84.136(2)°, ␥ 81.995(2)°, R1 = 2.8%; Fe[(UO2)(AsO4)]2(H2O)8 (i.e., synthetic metakahlerite): triclinic P1, a 7.2072(3), b c ␣ ° ␤ ° ␥ ° R i.e. 9.8242(4), 13.2708(6) Å, –75.370(1) , 84.024(1) , 81.839(1) , 1 = 2.9%; Co[(UO2)(AsO4)]2(H2O)8 ( , synthetic metakirchheimerite): triclinic P1, a 7.1955(3), b 9.7715(4), c 13.2319(6) Å, ␣ 75.525(1)°, ␤ 84.052(1)°, ␥ 81.661(1)°, R1 = 2.5%. Keywords: autunite, bassetite, kahlerite, kirchheimerite, lehnerite, metakahlerite, metakirchheimerite, metalodèvite, metanováˇcekite, metasaléeite, nováˇcekite I, nováˇcekite II, saléeite, uranyl phosphate, uranyl arsenate, crystal structure, gel synthesis, hydrothermal synthesis. § E-mail address: [email protected] 1700 THE CANADIAN MINERALOGIST SOMMAIRE Nous avons synthétisé des composés contenant le feuillet de type autunite et des cations bivalents (Mg, Mn, Fe, Co, Ni) en position interfoliaire, par diffusion dans des gels ou bien par voie hydrothermale, et nous en avons déterminé la structure cristalline. Nous avons prélevé les données d’intensités en diffraction X sur monocristaux à température ambiante en utilisant un rayonnement – MoK␣ et un détecteur à aire de type CCD. Le feuillet de type autunite possède une composition [(UO2)(XO4)] , X = P ou As; il y a partage des coins équatoriaux des bipyramides carrées à uranyle avec les tétraèedres de phosphate ou d’arsenate. La région interfoliaire contient des groupes H2O et des cations en coordinence octaédrique. Ces feuillets sont liés par liaisons hydrogène et par liaisons entre les cations interfoliaires et les atomes d’oxygène des feuillets. Nous évaluons les rôles structuraux dans la détermination des symétries et des degrés d’hydratation. Il y a trois degrés d’hydratation; chacun possède une symétrie et une valeur de l’espacement interfoliaire caractéristiques. Les dodécahydrates sont tricliniques (pseudomonocliniques), espacement interfoliaire ~11 Å; les décahydrates sont monocliniques (pseudo-orthorhombiques et généralement maclés), espacement interfolaire ~10 Å, et les octahydrates sont tricliniques, espacement interfolaire d’environ 8.7 Å. Chaque degré d’hydratation correspond à un type de structure différent; le nombre de groupes de H2O ne varie pas de la même manière que dans un zéolite, mais est nécessaire pour conserver l’intégrité du réseau de liaisons hydrogène de ces composés. Un changement du degré d’hydratation, soit par déshydratation ou par réhydratation,– donne lieu à des transformations structurales. Données P a b c ␣ ° ␤ cristallographiques: Mn[(UO2)(AsO4)]2(H2O)12: triclinique 1, 7.1359(11), 7.1439(11), 11.3616(17) Å, – 81.592(3) , 81.639(3)°, ␥ 88.918(3)°, R1 = 3.3%; Co[(UO2)(AsO4)]2(H2O)12 (i.e., “kirchheimerite” synthétique): triclinique P1, a 7.1552(5), b c ␣ ° ␤ ° ␥ ° R i.e. 7.1586(5), 11.2912(8) Å,– 81.487(2) , 81.410(2) , 88.891(2) , 1 = 5.1%; Mg[(UO2)(AsO4)]2(H2O)12 ( , nováˇcekite P a b c ␣ ° ␤ ° ␥ ° R I synthétique): triclinique 1, 7.1594(5),– 7.1610(5), 11.3146(7) Å, 81.391(2) , 81.177(1) , 88.884(1) , 1 = 4.3%; P a b c ␣ ° ␤ ° ␥ ° Ni[(UO2)(AsO4)]2(H2O)12: triclinique 1, 7.1523(3),– 7.1583(3), 11.2564(5) Å, 81.549(1) , 81.356(1) , 88.916(1) , R1 = 2.7%; Ni[(UO2)(PO4)]2(H2O)12: triclinique P1, a 6.9962(15), b 7.0012(15), c 11.171(2) Å, ␣ 81.591(4)°, ␤ 82.189(4)°, ␥ 88.721(4)°, R1 = 3.2%; Mn[(UO2)(PO4)]2(H2O)10: monoclinique I2/m, a 6.9656(4), b 20.3768(13), c 6.9775(4) Å, ␤ 91.019(1)°, R1 = 2.7%; Co[(UO2)(PO4)]2(H2O)10: monoclinique P21/n, a 6.9490(5), b 19.9348(16), c 6.9620(5) Å, ␤ 90.440(2)°, R1 = 5.1%; Ni[(UO2)(PO4)]2(H2O)10: monoclinique P21/n, a 6.9506(4), b 19.8215(11), c 6.9711(4) Å, ␤ 90.418(1)°, R1 = 3.1%; i.e. P n a b c ␤ Mg[(UO2)(AsO4)]2(H2O)10 ( , nováˇcekite II synthétique): monoclinique– 21/ , 7.1328(11), 20.085(3), 7.1569(11) Å, ° R P a b c ␣ ° ␤ 90.585(3) , 1 = 8.5%; Mn[(UO2)(AsO4)]2(H2O)8: triclinique 1, 7.2244(5), 9.9170(8), 13.337(1) Å,– 75.012(2) , 84.136(2)°, ␥ 81.995(2)°, R1 = 2.8%; Fe[(UO2)(AsO4)]2(H2O)8 (i.e., métakahlerite synthétique): triclinique P1, a 7.2072(3), b c ␣ ° ␤ ° ␥ ° R i.e. 9.8242(4), 13.2708(6) Å, 75.370(1) , – 84.024(1) , 81.839(1) , 1 = 2.9%; Co[(UO2)(AsO4)]2(H2O)8 ( , métakirchheimerite synthétique): triclinique P1, a 7.1955(3), b 9.7715(4), c 13.2319(6) Å, ␣ 75.525(1)°, ␤ 84.052(1)°, ␥ 81.661(1)°, R1 = 2.5%. Mots-clés: autunite, bassetite, kahlerite, kirchheimerite, lehnerite, métakahlerite, métakirchheimerite, métalodèvite, métanováˇcekite, métasaléeite, nováˇcekite I, nováˇcekite II, saléeite, phosphate uranylé, arsenate uranylé, structure cristalline, synthèse par gel, synthèse hydrothermale. INTRODUCTION exception of the copper-bearing species (torbernite, zeunerite, metatorbernite and metazeunerite), these min- Compounds that contain the autunite-type sheet erals are relatively rare. The copper-bearing species also comprise one of the two major structural divisions of differ in the details of their structures because of a pro- uranyl phosphate and uranyl arsenate minerals (the nounced Jahn–Teller effect (Eby & Hawthorne 1993), phosphuranylite group being the other), and together and have been discussed previously (Locock & Burns consist of approximately forty mineral species (Smith 2003b). The results reported herein pertain to com- 1984, Finch & Murakami 1999, Burns 1999). The cor- pounds that contain divalent interlayer cations: Mg and rugated autunite-type sheet has the composition the first-row transition metals Mn, Fe, Co and Ni. – [(UO2)(XO4)] , X = P or As, and involves the sharing of equatorial vertices of uranyl square bipyramids with PREVIOUS WORK phosphate or arsenate tetrahedra; it was first described by Beintema (1938).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us