The Work of Granville–Stark on ABC and Siegel Zeros

The Work of Granville–Stark on ABC and Siegel Zeros

The work of Granville{Stark on ABC and Siegel zeros Christian T´afula D´epartement de math´ematiques et de statistique (DMS), Universit´ede Montr´eal(UdeM) Math 726: Topics in Number Theory Modular forms and the theory of complex multiplication T´afula,C. (DMS, UdeM) Granville{Stark October 2020 0 / 22 Contents 1 Introduction 2 Lower bounds for h(D) 3 The Siegel zero T´afula,C. (DMS, UdeM) Granville{Stark October 2020 1 / 22 Contents 1 Introduction 2 Lower bounds for h(D) 3 The Siegel zero T´afula,C. (DMS, UdeM) 1. Intro October 2020 2 / 22 Notation p p D < 0 fundamental discriminant (so D2 = R, D = disc Q( D)); p C`(D) = class group of Q( D); p h(D) = jC`(D)j class number of Q( D); j = j-invariant function: 3 1 + 240 P P d3qn n≥1 djn 2πiτ j(τ) := Q n 24 =(τ) > 0; q = e q n≥1(1 − q ) j(i) = 1728; q-expansion of j: j(τ + 1) = j(τ); 2πi=3 j(e ) = 0; 1 j(−1/τ) = j(τ); j(τ) = + 744 + 196884q + ··· \j(i1) = 11"; q T´afula,C. (DMS, UdeM) 1. Intro October 2020 3 / 22 Singular moduli (1/2) Let τ 2 h (=(τ) > 0) A; B; C 2 ; A > 0; CM-point: τ j Aτ 2 + Bτ + C = 0 Z gcd(A; B; C) = 1; unique Singular modulus: j(τ)(j = j-invariant, τ a CM-point) CM-points Quadratic forms F ! τ 2 h Ax2 + Bxy + Cy2 2πi πi e 3 e 3 disc(τ) := B2 − 4AC • ◦ τ ∼ τ 0 () (A; B; C) ∼ (A0;B0;C0) τ 2 F () (A; B; C) reduced -1 -0.5 0 0.5 1 T´afula,C. (DMS, UdeM) 1. Intro October 2020 4 / 22 Singular moduli (2/2) Heegner points ΛD Reduced prim. quad. forms of disc. D 8 (a; b; c) := ax2 + bxy + cy2 9 CM-points τ 2 F ; < = ! s.t. b2 − 4ac = D; and disc(τ) = D :−a < b ≤ a < c or 0 ≤ b ≤ a = c; p 2 p 2 D −1 + D τD := or $ Principal form p 2 2 Z[τD] = O ( D) |{z} | {z } | {z } Q D≡0(4) D≡1(4) D 1−D (1;0;− 4 ) or (1;1; 4 ) p Write HD := Hilbert class field of Q( D). p p HD = Q( D; j(τD)) [HD : Q( D)] = [Q(j(τD)) : Q] = h(D) p fj(τ) j τ 2 ΛDg = Gal(Q=Q( D))-conjugates of j(τD) j(τD) is an algebraic integer! T´afula,C. (DMS, UdeM) 1. Intro October 2020 5 / 22 The equation x3 − Dy2 = 1728 In class, we saw the equation x3 − Dy2 = 1728 (= j(i)). Factorization of differences of singular moduli 3 2 Solutions of the type (j(τD); j(τD) − 1728) = (x ; Dy ) Idea: ABC =) few such solns =) lower bounds for h(D) ABC : a; b; c 2 Z coprime: 8" > 0; 9C" > 0 s.t. Q 1+" (a + b = c) maxfjaj; jbj; jcjg < C" pjabc p Example (Class number 1) p We've seen that h(D) = 1 =) x; y jDj 2 Z. However, in this case, p abc p 3 2 1+" jj(τD)j ≤ maxfjxj ; jy Dj ; 1728g ≤ C" · jx · y Dj 5 (1+") ≤ C" · jj(τD)j 6 ; so there can only be finitely many D < 0 with h(D) = 1. 4 T´afula,C. (DMS, UdeM) 1. Intro October 2020 6 / 22 How does h(D) grow? What do we know? h(D) ! 1 as D ! −∞ (Heilbronn, 1934) List h(D) (small values of jDj) Estimate h(D) (large values of jDj) −D 2 f3; 4; 7; 8; 11; 19; 43; 67; 163g are the only D s.t. h(D) = 1 Solved by Heegner (∼1952) [based on Weber's work] Reworked and clarified by Stark, Birch (1967∼9) Baker's solution (∼1970) [based on Baker's theorem] h(D) grows roughly like jDj1=2 (GRH =) err ≈ (log log jDj)±1) h(D) Hecke (1917): If ζ p (s) 6= 0 near 1, then (log jDj)−1 Q( D) jDj1=2 h(D ) h(D ) Landau (1918): max 1 ; 2 (log jD D j)−1 1=2 1=2 1 2 jD1j jD2j h(D) Siegel (1935): jDj−" (unconditional but ineffective) jDj1=2 " T´afula,C. (DMS, UdeM) 1. Intro October 2020 7 / 22 Contents 1 Introduction 2 Lower bounds for h(D) 3 The Siegel zero T´afula,C. (DMS, UdeM) 2. LB for h(D) October 2020 8 / 22 The Granville{Stark Theorem Theorem (Granville{Stark, 2000) \No Siegel zeros" for Uniform abc-conj. =) ζ p (s); D < 0 Q( D) Study x3 − y2 = 1728 A. Granville Uniform ABC for number fields (U-abc) U-abc =) lower bounds for h(D) 1 Lower bounds h(D) () 2 \no Siegel zeros" H. Stark T´afula,C. (DMS, UdeM) 2. LB for h(D) October 2020 9 / 22 The equation x3 − y2 = 1728 3 2 Solutions of the type (j(τD); j(τD) − 1728) = (x ; y ) X ABC (for Q) : log maxfjaj; jbj; jcjg < (1 + ") log p + O"(1) pjabc | {z } log -conductor Applying the same logic for x3 − y2 − 1728 = 0, we would get: log maxfjxj3; jyj2g ≤ log maxfjxj3; jyj2; 1728g abc ≤ (1 + ") log -cond(12jxyj) + tax 5 ≤ (1 + ") log maxfjxj3; jyj2g + tax 6 How to make −! this precise? log maxfjxj3; jyj2g < (6 + "0) · tax T´afula,C. (DMS, UdeM) 2. LB for h(D) October 2020 10 / 22 abc-conjecture for number fields (1/2) non Let K=Q be a NF, MK its places, MK ⊆ MK non-arch. places n For a point P = [x0 : ··· : xn] 2 PK , define: (na¨ıve, abs, log) height ht(P ) (log) conductor NK (P ) 1 1 X X fv log(pv) log maxfkxikvg [K : ] [K : Q] i Q v2Mnon v2MK K 9i;j≤n s:t: v(xi)6=v(xj ) For a; b; c 2 coprime, Z $ 8 v ∼ p = p ht([a : b : c]) = log maxfjaj; jbj; jcjg <> v p ∼ p \ Q v v Q NQ([a : b : c]) = log pjabc p :> fv := [Kv : Qpv ] 1 X α integral ) ht(α) = log+ jα∗j jAj For α 2 Q, ht(α) := ht([α : 1]). α∗2A A = fconjugates of αg T´afula,C. (DMS, UdeM) 2. LB for h(D) October 2020 11 / 22 abc-conjecture for number fields (2/2) abc-conjecture for number fields Fix K=Q a number field. Then, for every " > 0, there is C(K; ") 2 R+ such that, 8a; b; c 2 K j a + b + c = 0, we have ht([a : b : c]) < (1 + ") NK ([a : b : c]) + log(rdK ) + C(K; "); 1=[K: ] where rdK := j∆K j Q is the root-discriminant of K. Example (a; b; c integral, coprime) For a; b; c 2 OK coprime (meaning v(a) 6= v(b) 6= v(c) for v < 1), 1 1 1 [K:Q] [K:Q] [K:Q] maxfjNK=Q(a)j ; jNK=Q(b)j ; jNK=Q(c)j g !1+" Y OK < CK;" j∆K j pOK ; p j (abc) with CK;" = exp([K : Q] ·C(K; ")). T´afula,C. (DMS, UdeM) 2. LB for h(D) October 2020 12 / 22 What do we get? 3 2 3 2 (j(τD); j(τD) − 1728) = (x ; y ) x − y = 1728 j(τD) 2 HD He D := HD(x; y) [He D :HD] ≤ 6 3 2 • \ log maxfjxj ; jyj g" < (6 + ") · tax(He D;") More precisely: ht(j(τD)) < 6 (1 + ") log(rd ) + C(HD;") He D e p p p \Factorization": rd ≤ 6 jDj rdH = rd = jDj He D D Q( D) 1 Uniform ABC-conj.: C(K; ") = C(") =) tax(") log jDj . 2 T´afula,C. (DMS, UdeM) 2. LB for h(D) October 2020 13 / 22 Lower bounds for h(D) Lemma [G{S] Unif. ABC-conj. =) ht(j(τD)) ≤ (3 + o(1)) log jDj However, 1 X ax2 + bxy + cy2 ht(j(τ )) = log+ jj(τ )j D h(D) (a;b;c) reduced; (a;b;c) 2 p b − 4ac = D 1 X π jDj = + O(1); h(D) a p (a;b;c) −b + D τ(a;b;c) = and thus: 2a Theorem [G{S] q-expansion! p U-abc π jDj X 1 1 h(D) ≥ + o(1) j(τ) = + O(1) 3 log jDj a q (a;b;c) T´afula,C. (DMS, UdeM) 2. LB for h(D) October 2020 14 / 22 Contents 1 Introduction 2 Lower bounds for h(D) 3 The Siegel zero T´afula,C. (DMS, UdeM) 3. Siegel zero October 2020 15 / 22 p Dedekind zeta function of Q( D) X 1 c−1 ζ (s) = = + c + O(s − 1) (s ! 1) K N(a)s s − 1 0 a⊆OK Conjecture (\no Siegel zeros" for D < 0) δ There is δ > 0 such that ζ p (β) 6= 0 for 1 − ≤ β < 1. Q( D) log jDj π h(D) • Dirichlet's class number formula: c−1(D) = (D < −4) pjDj p 1 π h(D) log jDj −1 ζ (β) ≤ − + c0(D) + O (log jDj) Q( D) δ pjDj U-abc 1 X 1 ≤ − + o(1) + c (D) + o(1) δ a 0 (a;b;c) T´afula,C. (DMS, UdeM) 3. Siegel zero October 2020 16 / 22 Kronecker's limit formula (KLF) X 1 We just need to show that c (D) (as D ! −∞). 0 a (a;b;c) +1 ! 1 X X 1 ζ p (s) = Q( D) 2 (am2 + bmn + cn2)s (a;b;c) m;n=−∞ m;n 6= 0 | {z } Epstein zeta function: Z(a;b;c)(s) KLF [Kronecker 1863, Weber 1881, :::, Chowla{Selberg 1967, :::] The constant term (c0) of Z(a;b;c)(s) as s ! 1 is given by: p p ! π 1 jDj −b+ D 4 2γ − log(2) − log jDj − log η pjDj 2 2a 2a T´afula,C.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us