Black Silicon: Silicon Sees the Light

Black Silicon: Silicon Sees the Light

Black silicon: silicon sees the light Graduate Consortium on Energy and Environment Harvard University Cambridge, MA, 17 September 2010 Mark Winkler Renee Sher Yu-Ting Lin Eric Mazur and also.... Eric Diebold Prof. Tonio Buonassisi (MIT) Haifei Albert Zhang Prof. Silvija Gradecak (MIT) Dr. Brian Tull Dr. Bonna Newman (MIT) Dr. Jim Carey Joe Sullivan (MIT) Prof. Tsing-Hua Her Dr. Shrenik Deliwala Prof. Augustinus Asenbaum (Vienna) Dr. Richard Finlay Dr. Michael Sheehy Dr. François Génin (LLNL) Dr. Claudia Wu Mark Wall (LLNL) Dr. Rebecca Younkin Prof. Catherine Crouch Dr. Richard Farrell (RMD) Prof. Mengyan Shen Dr. Arieh Karger (RMD) Prof. Li Zhao Dr. Richard Meyers (RMD) Dr. John Chervinsky Dr. Pat Maloney (NVSED) Dr. Joshua Levinson Dr. Jeffrey Warrander (ARDEC) Prof. Michael Aziz Prof. Cynthia Friend Prof. Howard Stone Introduction ������� ���������� ����� outer (“valence”) electrons determine electronic properties Introduction pure (“intrinsic”) silicon Introduction electrons in covalent bond are immobile Introduction all electrons bound, so no conduction Outline • doped semiconductors • pn-junctions • black silicon Doped semiconductors intrinsic silicon: no conduction Doped semiconductors substitute phosphorous: surplus of (free) electrons Doped semiconductors (but material as a whole still neutral!) Doped semiconductors � � apply electric field… Doped semiconductors � � …free electrons lead to conduction Doped semiconductors � � electrons in electrons out …free electrons lead to conduction Doped semiconductors substitute boron: deficit of electrons leaves “holes” Doped semiconductors � � apply electric field… Doped semiconductors � � …presence of holes leads to conduction Doped semiconductors � � …presence of holes leads to conduction Doped semiconductors � � …presence of holes leads to conduction Doped semiconductors � � …presence of holes leads to conduction Doped semiconductors � � …presence of holes leads to conduction Doped semiconductors � � motion of holes holes are like positively charged particles Doped semiconductors � � holes out electrons out (electrons in) (holes in) motion of holes holes are like positively charged particles Doped semiconductors ������ ������ simplify representation Outline • doped semiconductors • pn-junctions • black silicon pn-junctions ������� ������� ������ ������ bring p and n materials together… pn-junctions ������� ������� ������ ������ bring p and n materials together… pn-junctions ������� � � ������� ������ ������ electrons and holes diffuse across junction… pn-junctions ������� � � ������� ������ ������ …and get ‘trapped’ after they combine pn-junctions ������� � � ������� � � ������ ������ build-up of charge leads to electric field that stops diffusion pn-junctions ������� � � ������� � � ������ ������ �������������� ����������� non-conducting layer at junction pn-junctions � � ������� � � ������� � � ������ ������ �������������� ����������� apply electric field… pn-junctions � � ������� � � ������� � � ������ ������ �������������� ����������� …holes pushed to left, electrons to right… pn-junctions � � ������� � � � � ������� � � ������ ������ �������������� ����������� …and so depletion zone expands pn-junctions � � ������� � � � � ������� � � ������ ������ �������������� ����������� NO conduction pn-junctions � � � � � � ������ ������ �������������� ����������� reverse electric field… pn-junctions ������� ������� � ������������� � ������������ ���������� ������ ������ …depletion zone shrinks and current flows pn-junctions so pn-junction like one-way valve for charge flow pn-junctions diode � � current flows along arrow only (from p to n) pn-junctions can also be used as a light detector! pn-junctions ������� � � ������� � � ������ ������ �������������� ����������� depletion layer can convert light into electric energy pn-junctions ������� � � ������� � � ������ ������ �������������� ����������� incident photon knocks out electron… pn-junctions ������� � � ������� � � ������ ������ �������������� ����������� …creating an electron-hole pair pn-junctions ������� � � ������� � � ������ ������ �������������� ����������� E-field separates eh-pair, causing current pn-junctions how to make a miniature diode on a chip? pn-junctions ������ begin with an n-doped wafer pn-junctions ������ ������ p-dope small region pn-junctions ���� ������ ������ cover with insulating layer pn-junctions ���� ������ ������ etch insulating layer pn-junctions �������� ���� ������ ������ add aluminum contacts Outline • doped semiconductors • pn-junctions • black silicon Black silicon SF6 Si irradiate with 100-fs 10 kJ/m2 pulses Black silicon Black silicon “black silicon” Black silicon 3 µm Black silicon 10 µm Black silicon 10 µm Black silicon Black silicon Black silicon absorptance 1.0 0.8 0.6 0.4 absorptance 0.2 crystalline silicon 0 0 1 2 3 wavelength ( µ m) Black silicon absorptance 1.0 microstructured silicon 0.8 0.6 0.4 absorptance 0.2 crystalline silicon 0 0 1 2 3 wavelength ( µ m) Black silicon What causes the near-unity absorptance? Black silicon Black silicon multiple reflections enhance absorption 1.0 microstructured silicon 0.8 0.6 0.4 absorptance 0.2 crystalline silicon 0 0 1 2 3 wavelength ( µ m) Black silicon multiple reflections enhance absorption 1.0 microstructured silicon 0.8 0.6 0.4 absorptance 0.2 crystalline silicon 0 0 1 2 3 wavelength ( µ m) Black silicon heavy sulfur doping causes infrared absorption 1.0 microstructured silicon 0.8 0.6 0.4 absorptance 0.2 crystalline silicon 0 0 1 2 3 wavelength ( µ m) Black silicon Black silicon Black silicon cross-sectional Transmission Electron Microscopy Black silicon M. Wall, F. Génin (LLNL) 1 µm Black silicon crystalline Si core 1 µm Black silicon sulfur-containing surface layer 1 µm Black silicon black silicon/n-type silicon junction n-Si substrate Black silicon black silicon/n-type silicon junction n-Si substrate Black silicon black silicon/n-type silicon junction n-Si substrate Black silicon black silicon/n-type silicon junction Cr/Au contacts n-Si substrate Black silicon black silicon/n-type silicon junction 3 mm Cr/Au contacts ~ 400 nm 260 µm n-Si substrate 100 nm 4 mm Black silicon IV characteristics 4 2 dark 0 –2 current (mA) –4 –6 –3 –2 –1 0 1 2 3 bias (V) Black silicon IV characteristics 4 2 dark 0 –2 current (mA) illuminated –4 –6 –3 –2 –1 0 1 2 3 bias (V) Black silicon responsivity 100 10 1 commercial Si PIN 0.1 responsivity (A/W) 0.01 0.001 200 600 1000 1400 1800 wavelength (nm) Black silicon responsivity 100 10 –0.1 V bias 1 commercial Si PIN 0.1 responsivity (A/W) 0.01 0.001 200 600 1000 1400 1800 wavelength (nm) Black silicon responsivity 100 –0.5 V bias 10 –0.1 V bias 1 commercial Si PIN 0.1 responsivity (A/W) 0.01 0.001 200 600 1000 1400 1800 wavelength (nm) Black silicon Black silicon photo diode (at 0.5 V bias): • 100x larger signal in visible (gain!) • 105 larger signal in infrared Devices http://www.sionyx.com Black silicon New Scientist 13, 34 (2001) Black silicon Black silicon also promising for solar cells Black silicon What causes the large gain? How could black silicon be useful for photovoltaics? Devices solar spectrum 2.5 m) μ 2 2.0 1.5 1.0 0.5 spectral irradiance (kW/m 0 0 0.5 1.0 1.5 2.0 2.5 wavelength (μ m) Devices solar spectrum 2.5 m) μ 2 2.0 1.5 1.0 0.5 1353 W/m2 spectral irradiance (kW/m 0 0 0.5 1.0 1.5 2.0 2.5 wavelength (μ m) Devices crystalline silicon: transparent to 23% of solar radiation 2.5 m) μ 2 2.0 1.5 c-Si band gap = 1.12 μm 1.0 0.5 1042 W/m2 spectral irradiance (kW/m 0 0 0.5 1.0 1.5 2.0 2.5 wavelength (μ m) Devices amorphous silicon: transparent to 53% of solar radiation 2.5 m) a-Si band gap = 0.71 μm μ 2 2.0 1.5 1.0 0.5 636 W/m2 spectral irradiance (kW/m 0 0 0.5 1.0 1.5 2.0 2.5 wavelength (μ m) Devices black silicon: potential to recover transmitted energy 2.5 m) μ 2 2.0 1.5 1.0 0.5 1353 W/m2 spectral irradiance (kW/m 0 0 0.5 1.0 1.5 2.0 2.5 wavelength (μ m) Devices very preliminary photovoltaic cell 1 remove V source, 0 0 insert load m W A measure I Devices very preliminary photovoltaic cell 5 0 dark –5 –10 current (mA) –15 –20 –1 0 1 bias (V) Devices very preliminary photovoltaic cell 5 0 dark –5 –10 current (mA) –15 illuminated –20 –1 0 1 bias (V) Devices 1.5% efficiency, a good beginning 5 0 dark –5 1.5 mW –10 current (mA) –15 illuminated –20 –1 0 1 bias (V) Funding: Army Research Offi ce DARPA Department of Energy NDSEG National Science Foundation for more information and a copy of this presentation: http://mazur-www.harvard.edu Follow me! eric_mazur Funding: Army Research Offi ce DARPA Department of Energy NDSEG National Science Foundation for more information and a copy of this presentation: http://mazur-www.harvard.edu Follow me! eric_mazur.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    103 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us