U.S. DEPARTMENT OF COMMERCE WEATHER BUREAU TECHNICAL _PAPER NO. 49 'I'WO- TO TEN-DAY PRECIPITATION FOR RETURN PERIODS OF 2 TO 100 YEARS IN THE CONTIGUOUS UNITED STATES OKLAHOMA CiTY, vKL.A. RECEIVED OCT 5-1964 WASHINGTON, D.C. USGS 1964 SURFACE WATER BRANCH U.S. DEPARTMENT OF COMMERCE WEATHER BUREAU LUTHER H. HODGES, Secretary ROBERT M. WHITE, Chief TECHNICAL PAPER NO. 49 Two- to Ten-Day Precipitation for Return Periods of 2 to 100 Years in the Contiguous United States Prepared by JOHN F. MILLER Cooperative Studies Section, Office of Hydrology, U.S. Weather Bureau for Engineering Division, Soil Conservation. Service, U.S. Departm.ent of Agriculture WASHINGTON, D.C. 1964 For BBle by the Superintendent of Documents, U.S. GovenunentPrinting Otlice, Waahiugton, D.C., 20402 PREFACE Authority.-This report was prepared for the Soil Conservation Service to provide generalized rainfall information for planning and design purposes in connection with its Watershed Protection and Flood Prevention Program (authori­ zation: P.L. 566, 83d Congress, and as amended). Scope.-Precipitation data for various hydrologic design problems involving areas up to 400 square miles and dura­ tions from 2 to 10 days are presented. The data consist of generalized estimates of rainfall-frequency data for return periods from 2 to 100 years. Accuracy of results.-The degree of accuracy of the generalized estimates depicted on the rainfall-frequency maps presented in this report is believed to be adequate for practically all engineering purposes. It should be expected that somewhat greater accuracy might have been obtained had the maps been based on data from the several thousand available precipitation gages instead of from a few hundred. However, the collection and frequency analysis of rainfall data for durations up to 10 days for a few thousand gages would have been a formidable task and an extremely costly enterprise. Furthermore, the accuracy of the results obtained is much greater than indicated by the relatively small number of stations used since the approach involved the projection of the 24-hour rainfall-frequency maps of Techm:wal Paper No. 40 [I], which are based on data from several thousand stations. The possible greater accuracy that might have been obtained by use of data. from a. much larger number of gages was judged to be incommensurate with the much greater cost involved. Acknowledgments.-The project was under the general supervision of J. L. H. Paulhus, Chief of the Cooperative Studies Section of the Office of Hydrology, W. E. Hiatt, Acting Director. L. L. Weiss assisted with the investigations. W. E. Miller and N. S. Foat supervised the collection and processing of the basic data.. Drafting was supervised by C. W. Gardner. Coordination with the Soil Conservation Service was maintained through H. 0. Ogrosky, Chief, Hydrology Branch, Engineering Division. CONTENTS page Page PurACE. __ ---__ --------_____ ---------__________________________________________ -=-- _______________________________ _ ii Figure 8.-Points for which precipitation-frequency data were computed-------------------------------------------------­ 4 INTRODUCTION-----------------------------------------------------------------------------------------------------­ 1 Figure 9.-Bmoothing values read from isopluvial maps----------------------------------------------------------------- .; Figure 10.-Depth-area curves _______________ ----_-----------__________ ------_______ ----_______________ --- ____ -------_ BASIC DATA •• ----------------~------------------------------------------------------------------------------------ 1 5 Summarization of data-Period and length of record-Station exposure. Figure 11.-Location of dense networks used to develop depth-area curves------------------------------------------------- 5 DUBATION ANALYSIS------------------------------------------------------------------------------------------------- 2 Figure 12.-2-year 2-day precipitation (in.)-------_________ --------__ ------ _______ ---------__ ----_--------------_______ _ 6 •hour vs. observational-day precipitation-Duration-interpolation diagram. Figure 13.-5-year 2-day precipitation (in.) ___________ --_______ -----_------____________ --------____ -----_____ -----_____ _ 7 FBI!IQUENCY ANALYSIS----------------------------------------------------------------------------------------------- 2 Figure 14.-10-year 2-day precipitation (ln.) ___ ----___ ------___ -----_----______ ------__ -----________________ ----_______ _ 8 Two types of series-Frequency considerations--Construction of return-period diagram-Use of return-period diagram- Figure 15.-25-year 2-day precipitation (ln.) ________________ ----______ --------------__ ----_______ ----___ ---____________ _ 9 General applicability of return-period diagram--8ecular trend. Figure 16.-50-year 2-day precipitation (in.) ___ ----_________ -----____ ------_____ -----____ ----____ ----___ ---_------_____ _ 10 lao PLUVIAL MAPS ______ -------____________________________ --------_----___ ---------------------------___ ----_______ _ 2 Figure 17.-100-year 2-day precipitation (ln.) __________________ --- __________ ----_____ ----________ -------_______________ _ 11 Relation between 2-year 24- and 240-hour amounts-smoothing of isopluvial maps-2-year 10-day map-Ratio of 100-year Figure 18.-2-year 4-day precipitation (in.) ____ --__ --_______ ----_______ ---___ ---------_-----_____ -------------_________ _ 12 to 2-year values-100-year 10-day map-22 additional maps-Reliability of results-Isoline interval-Bmoothmg values Figure 19.-5-year 4-day precipitation {in.) ___________________ ----_----_________ ----__ --------______ --- __ --_----- ______ _ 13 read from maps. Figure 20.-10-year 4-day precipitation {in.) ______ ---__________ ------_____________ ----__ ------___________ ---___________ _ 14 DEPTH-ABEA RELATIONBBIPS-- --------------------------------------------------------------------------------------- 4 Figure 21.-25-year 4-day precipitation {ln.) _______ --__ --__ --------_------____ ----_________ ---------------------_______ _ 15 Introduction-Data used-Determination of area of network-Construction of the ourves-Geographic variation. Figure 22.-50-year 4-day precipitation {ln.) _____ --____ -- ____________ ----____ -----___ -----______ -----------___ ----_____ _ 16 SEASONAL VARIATION------------------------------------------------------------------------------------------------ 4 Figure 23.-100-year 4-day precipitation (in.) ____________ ----_--------___ ----___ -----__ ----____ ------------___________ -- 17 REriDIIENCES•• --- _ ---____ ----_________________________ ----______ -----__________ • _____________ ------________________ _ .; Figure 24.-2-year 7-day precipitation (in.) _____________ ---__ -----_____ -----_____ -----------_____ -------------------- __ _ 18 Figure 25.-5-year 7-day precipitation {in.) ________ ------____ --------------------________ -----___ ------_____ -----______ _ 19 Figure 26.-10-year 7-day precipitation ("ln.) __________________ ---------__ ---_____________________ ------_-----__________ _ 20 LIST OF U.LUSTRATIONS Flgure 27.-25-year 7-day precipitation (in.) __ ---------___ ----______ --------__ -----__ ---------_---------- __ -----______ _ 21 Figure I.-Precipitation stations. ______ -------________ -------------_------------------------------------------------_ 1 Figure 28.-50-yeail, 7-day precipitation (in.) _________________________ ----_----------___ ----______ ------_----___________ _ 22 Figure 2.-Relation between 2-year 2-observational-day and 2-year 48-hour precipxtation----------------------------------- 2 Figure 29.-100-year 7-day precipitation (in.) ________________ -----_----------______ ---------_-------------____ --___ --_-- 23 Figure 3.-Duration-interpolation diagram. ____ -----__ ---- ___ -------___ ---------------------_----------_----_______ --- 2 Figure 30.-2-year 10-day precipitation (ln.) ________ ---____ ---------__________ -----___________ ------------------_______ _ 24 Figure 4.-Relation between 2-year 4-day precipitation computed by extreme value analysis and 2-year 4-day precipitation Figure 31.-5-year 10-day precipitation (in.) _______ --------__ -----------_----____________________ ---------------_______ _ 25 estimated from duration-interpolation diagram (fig. 3)------------•----------------------------------------- 2 Figure 32.-10-year 10-day precipitation (in.)------_____ -----_----_________ ----____ ----------------------------______ --- 26 Figure 5.-Return-period-interpolation diagram ______ ----__ ---------_------------------------------------_----------_ 2 Flgure 33.-25-year 10-day precipitation (ln.) __________ ---_----______ ----______ ----_____ -----____ -----------_----____ --- 27 Figure 6.-Relationship for estimating 2-year 10-day precipitation------------------------------------------------------­ 3 Figure 34.-50-year 10-day precipitation (ln.) ____________________ ----___________ ----____ -----___ -----------____________ _ 28 Figure 7.-Relation between 2-year 10-day precipitation computed by extreme value analysis and 2-year 10-day precipitation Figure 35.-100-year 10-day precipitation ("ln.) _______ ---______ -----___ ---____ ----______ --------------------------__ ----- 29 estimated from figure 6. _ ------------------------------------------------------------------------------- 3 Two- to Ten-Day Precipitation for Return Periods of 2 to 100 Years in the Contiguous United States JOHN F. MILLER Cooperative Studies Section, Office of Hydrology, U.S. Weather Bureau, Washington, D.C. INTRODUCTION
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages32 Page
-
File Size-