
Contributions to the Meta-Theory of Struc- tural Operational Semantics Matteo Cimini Doctor of Philosophy November 2011 School of Computer Science Reykjavík University Ph.D. DISSERTATION ISSN 1670-8539 Contributions to the Meta-Theory of Structural Operational Semantics by Matteo Cimini Thesis submitted to the School of Computer Science at Reykjavík University in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2011 Thesis Committee: Luca Aceto, Supervisor Prof., Reykjavík University Willem Jan Fokkink Prof., VU University Amsterdam Matthew Hennessy, Examiner Prof., Trinity College Dublin Anna Ingólfsdóttir, Co-Supervisor Prof., Reykjavík University MohammadReza Mousavi Dr., Eindhoven University of Technology Copyright Matteo Cimini November 2011 The undersigned hereby certify that they recommend to the School of Com- puter Science at Reykjavík University for acceptance this thesis entitled Con- tributions to the Meta-Theory of Structural Operational Semantics sub- mitted by Matteo Cimini in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Date Luca Aceto, Supervisor Prof., Reykjavík University Willem Jan Fokkink Prof., VU University Amsterdam Matthew Hennessy, Examiner Prof., Trinity College Dublin Anna Ingólfsdóttir, Co-Supervisor Prof., Reykjavík University MohammadReza Mousavi Dr., Eindhoven University of Technology The undersigned hereby grants permission to the Reykjavík University Li- brary to reproduce single copies of this thesis entitled Contributions to the Meta-Theory of Structural Operational Semantics and to lend or sell such copies for private, scholarly or scientific research purposes only. The author reserves all other publication and other rights in association with the copyright in the thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise re- produced in any material form whatsoever without the author’s prior written permission. Date Matteo Cimini Doctor of Philosophy Contributions to the Meta-Theory of Structural Operational Semantics Matteo Cimini November 2011 Abstract Structural Operational Semantics (SOS) is one of the most natural ways for providing programming languages with a formal semantics. Results on the meta-theory of SOS typically (but not solely) say that if the inference rules used in writing the semantic specification of a language conform to some syntactic template then some semantic property is guaranteed to hold or some technique is applicable in order to gain some result. These syntactic templates are called rule formats. This thesis presents four contributions on the meta-theory of SOS. As a first contribution, (1) we offer a method for establishing the validity of equations (modulo bisimilarity). The method is developed under the vest of an equivalence relation that is suitable for mechanization, the rule-matching bisimilarity. Given a semantic specification defined in SOS and given the desired equation to check, the method runs a matching, bisimulation-like, procedure in order to determine the validity of the given equation. For the method to be applicable, the SOS specification must fit a well-known rule format called GSOS, which is fairly expressive. For instance most of the process algebras can be defined within GSOS. The method is general and, not surprisingly, might not terminate. We however show that relevant equations can be checked in finite time. As another contribution, (2) we present rule formats ensuring that certain constants of a language act as zero elements. An example of zero element, though in the context of mathematics, is the number 0, that is a zero element for the multiplication operator , i.e., x 0 = 0. Based on the design of one of the formats, we provide also× a rule format× for unit elements. The same number 0 is for instance an example of unit element for the sum operator +, as the algebraic law x + 0 = x is valid. As a third contribution, (3) we offer rule formats guaranteeing the validity of the distributivity law. Examples of distributivity laws in the context of 4 mathematics are (x + y) z = (x z) + (y z), i.e., the multiplication distributes over the sum,× and (A B×) C = (×A C) (B C), i.e., the set intersection distributes over the[ union.\ The algebraic\ [ laws\ addressed by contributions (2) and (3) are considered modulo bisimilarity. In both con- tributions, the proposed rule formats are mostly mechanizable and some of them are also very simple to check. Nonetheless, the rule formats we offer are expressive enough to check the validity of classic zero and unit elements as well as well-known distributivity laws from the literature. Thanks to contributions (2) and (3), now the meta-theory of SOS tackles all the basic algebraic laws, i.e., commutativity, idempotency, associativity, zero and unit elements and distributivity. Finally, (4) we propose Nominal SOS, an SOS based framework with special syntax and primitives for the definition of languages with binders. Binders bind a name in a context in order to give it a certain meaning or to denote that a special treatment for it is required. The ordinary SOS framework lacks a dedicated account for binders. Binders, however, proliferate both in math- ematics (one example is the universal quantification x:Φ) and in computer science (one example is the abstraction λx:M of the λ8-calculus). We provide evidence that the framework is expressive enough to model interesting cal- culi. For instance, we formulated the λ-calculus and the π-calculus within the framework of Nominal SOS and we established the operational correct- ness of these formulations with regard to the original ones. We offer a suit- able notion of bisimilarity that is aware of binding and we have embarked on a study of the relationship between this notion of bisimilarity and classic equivalences from the context of the λ- and π-calculus. We believe that the meta-theory of SOS is by now a mature field and times are ripe for a system- atic study of the meta-theory that concerns also those phenomena that are specifically related to binders. In this respect, we believe that our framework might be a good candidate to carry out such a study. Contributions to the Meta-Theory of Structural Operational Semantics Matteo Cimini Nóvember 2011 Útdráttur Structural Operational Semantics (SOS) er eðlilegasta leiðin til að gefa for- ritunarmálum formlega merkingu. Niðurstöður er yfirkenningu fyrir SOS segja almennt (þó ekki alltaf) að ef málskipan (e. syntax) sem notuð er fyrir mekingarfræðilega (e. semantic) skilgreiningu máls fylgir tilteknu sniðmáti þá er ákveðnir merkingarfræðilegir eiginleikar tyggðir, eða að einhver tækni- leg aðferð sé nothæf til að fá niðurstöður. Þessi málskipunar sniðmát (e. syntactic templates) eru kölluð regluform (e. rule formats). Þessi lokariterð kynnir fjögur framlög til yfirkenningar fyrir SOS. Sem fyrsta framlag, (1) kynnum við aðferð til meta lögmæti jafna (mótað við bisimilarity). Aðferðirnar eru þróaðar sem jafngildis vensl sem eru nothæf til sjálfvirknivæðingar sem rule-matching bisimilarity. Að gefnu merkingar- fræðilegum skilgreiningum á SOS formi auk jöfnu sem á að prófa, gefur aðferðin matching, bisimulation-like, algrím til að ákvarða lögmæti jöfnun- nar. Til að aðferðin sé nothæf verða SOS skilgreiningarnar að falla að vel þekktu formi GSOS reglna, sem er tiltölulega lýsandi. Sem dæmi er hægt að tákna flestar process algebrur með GSOS. Aðferðin er almenn en ekki er tryggt að útreikningum ljúki. Við sýnum þó að mikilvægar jöfnunur er hægt að prófa í endanlegum tíma. Sem næsta framlag, (2) kynnum við regluform sem þar sem tilteknir fastar málsins virka sem núll stök. Dæmi um núll stak, í stærðfræðilegu samhengi er talan 0, en hún er núll stak fyrir margföldunarvirkjan , þ.e. x 0 = 0. òt frá þessu formi skilgreinum við regluform fyrir einingastak.× Sama× talan, það er 0, er dæmi um einingarstak fyrir summu virkjan +, þar sem algebru reglan x + 0 = x heldur ávalt. Sem þriðja framlag, (3) kynnum við regluform sem tryggir dreifni-lögmálið. Dæmi um dreifni-lögmálið í stærðfræðilegu samhengi er (x + y) z = (x z) + (y z), það er margföldun dreifist yfir summu, og (A B)× C = (A ×C) (B ×C), það er sniðmengi dreifist yfir sammengi. Algebru[ lögmálin\ \ [ \ vi sem kynnt eru í (2) og (3) eru skoðuð mótuð við bisimilarity. Í báðum fram- lögunum eru regluformin sem kynnt eru að mestu leyti hægt sjálfvirknivæða og sum þeirra er einfalt að sannreyna. Þrátt fyrir það, eru reglu formin nógu lýsandi til að kanna lögmæti klassískra núll- og einingastaka, og vel þekktra dreifni-lögmála úr fræðunum. Með framlagi (2) og (3) þá er yfirkenning SOS fær um að leysa öll grunn al- gebru lögmálin, það er, víxlun, sjálfvöldun, tengireglu, núll og einingarstaka auk dreifireglu. Að lokum, (4) kynnum við Nominal SOS, sem er rammi byggður á SOS með tilteknum syntax og primatives fyrir skilgreiningar á máli með binders. Binders binda nöfn í samhengi til að gefa merkingu eða tákna þó að þörf sé á sérstakri meðferð. Heffbundin SOS rammi skortir skilgreiningar sem lýsa binders. Binders er að finna víða í stærðfræði (dæmi um binder er allsh- erjarvirkinn x:Φ) og í tölvunarfræði (sem gæmi má nefna sértekninguna λx:M í λ-calculus).8 Við sýnum að raminn er nægjanlega lýsandi til að módela áhugaverð mál. Sem dæmi þá formuðum við λ-calculus og π-calculus innan ramma Nominal SOS og við sýndum fram á lögmæti formanna með tilliti til upprunalegu formanna. Við kynntum viðeigandi táknun á bisimi- larity og klassískra jafngilda í samhengi λ- og π-calculus. Við teljum að yfirkenning SOS sé nú orðið þroskað svið og tími sé tilkominn til að rannsaka yfirkenningu í samhengi hluta sem tengjast binders. Í þessu samhengi þá teljum við að ramminn sem kynntur er sé henntugt kerfi til að framkvæma slíkar rannsóknir. vii Preface Twenty years from now you will be more disappointed by the things you didn’t do than by the ones you did do. So throw off the bowlines, sail away from the safe harbor.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages284 Page
-
File Size-