DEGREE PROJECT IN MATHEMATICS, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Emulation of Recoil in Pyrotechnic Countermeasure Dispenser System EBBA LINDGREN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Emulation of Recoil in Pyrotechnic Countermeasure Dispenser System EBBA LINDGREN Degree Projects in Systems Engineering (30 ECTS credits) Master’s Programme in Aerospace Engineering (120 credits) KTH Royal Institute of Technology year 2020 Supervisors at Saab AB: Knut-Oloj Jönsson, Marcus Birksjö Supervisor at KTH: Per Enqvist Examiner at KTH: Per Enqvist TRITA-SCI-GRU 2020:234 MAT-E 2020:064 Royal Institute of Technology School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci Abstract Developing countermeasures dispenser systems requires many and careful tests. When it comes to testing products with pyrotechnics, testing can often be very complicated and expensive. This might lead to no testing at all due to time or resource shortages. Products to be used in the military requires further testing and even more thorough reviews to meet the strict demands placed on the products. In order to enable more tests of pyrotechnic flares in the countermeasures industry, this degree project aims to increase theability to perform tests without the need for pyrotechnic means. This was done by designing, constructing and optimizing a recoil emulator, an apparatus that imitates the force-time curve obtained by pyrotechnic flares without the need of pyrotechnic means. The construction of the recoil emulator was conducted at a department that develops countermeasure systems at Saab Surveillance in Järfälla. The apparatus aims to be used in the future for testing and verification of product series of countermeasures dispenser systems. The design of the apparatus was based on a test result provided by a flare manufacturer of an arbitrarily chosen flare, typical in the countermeasures industry. Based on the provided test result, three measures were chosen that together describe the fundamental and essential characteristic parts of the recoil motion behavior of pyrotechnic flares. These three measures are in the thesis called recoil measure and defined as the Peak Recoil, the Impulse, and the Peak-Width. To be able to verify the recoil emulator, the three recoil measures were implemented in an error model, which was based on the squares of error. In order to make the emulator imitate the desired recoil motion behavior as pleasant as possible, the error model was implemented in an optimization model. By minimizing the error of data points from each of the recoil measures obtained from the real test provided by the manufacturer with results obtained from the recoil emulator, the emulator was verified and optimized accordingly. Results showed that the selected design of the recoil emulator resulted in a force-time curve that principally mimics the curve given by the real tests. The conclusion from the project was, therefore, that it is possible perform tests on countermeasures systems without pyrotechnics when considering the impact of recoil. Further development of this thesis could be to improve the construction of the recoil emulator and perform more research on flares and damping materials. Other future work could be to implement the emulator in existing test and validation processes at companies within the countermeasure industry. Keywords: Countermeasures, Flares, Recoil, Optimization, Pyroshock Testing i Sammanfattning Att utveckla motmedelsprodukter kräver många och noga utförda tester. När det kommer till testning av produkter med pyroteknik kan testerna ofta bli väldigt komplicerade och dyra eller inte göras alls på grund av tid- eller resursbrist. Produkter som ska användas inom militären kräver i många fall ytterligare tester och ännu noggrannare genomgångar för att kunna klara av de tuffa krav som sätts på produkterna. Den här avhandlingen syftade till att möjliggöra fler tester för pyrotekniska medel inom motmedelsindustrin. Detta har gjorts genom konstruktion, design och optimering av en rekylemulator; en apparat som immiterar den kraft-tid kurva som erhålls av pyrotekniska facklor, utan att använda pyrotekniska medel. Konstruktionen och utvecklandet av rekylemulatorn gjordes på uppdrag av en avdelning som utvecklar motmedelssytem på Saab Surveillance i Järfälla. Syftet med emulatorn är att använda den i framtiden vid testning och verifierering av produktserier av motmedelssystem. Designen av apparaten utgick från testresultat som tillhandahållits av en fackeltillverkare av en godtyckligt vald pyroteknisk fackla, vanlig inom motmedelsindustrin. Utifrån testresultaten togs tre mått ut som tillsammans beskriver fundamentala och viktiga karaktäristiska delar av rekylkraftsbeteendet hos pyrotekniska facklor. Dessa tre mått kallas rekylkraftsmått och definieras som rekylpeaken, impulsen, samt peakbredden. För att kunna verifiera rekylemulatorn implementerades dessa tre rekylkraftsmått ien felmodell, som baserades på det kvadratiska felet. För att få emulatorn att imitera det önskade rekylkraftsbeteendet så bra som möjligt implementerades en felmodellen i en optimeringsmodell. Genom att minimera felet av datapunkter från varje rekylkraftsmått som erhålls från resultatet av både det verkliga testet, tillhandahållna av tillverkaren, samt med resultat erhållna från rekylemulatoren kunde emulatorns valideras. Resultaten visade att den valda designen av rekylemulatorn resulterade i en kraft- tidskurva som huvudsakligen efterliknar den kraftkurva som ges av de verkliga testerna. Slutsatsen från projektet är därmed att det är möjligt att utföra tester på motmedelssystem utan pyroteknik när det kommer till påverkan av rekylkraften. Vidare utveckling av denna avhandling kan vara att förbättra och utveckla rekylemulatorn samt utföra mer forskning kring dämpningsmaterial samt facklor. Andra framtida aspekter av projektet kan vara att implementera apparaten i existerande test- och valideringsprocesser på företag inom motmedelsindustrin. Nyckelord: Motmedelssystem, Facklor, Rekylkraft, Optimering, Pyroshocktestning ii Acknowledgments As a writer, I would like to send many thanks to people who made this master thesis possible. A big thank you to Saab for offering me this exciting and challenging degree project. Thanks to the entire CMDS section, who supported me and provided both fun and advanced tips and suggestions on ideas. I would like to express my special thanks to my mentors, Knut-Olof Jönsson and Marcus Birksjö, who supported and cheered on me during this trip. Also sending a special thanks to the ever helpful Tommy Eriksson, for your help in building the recoil emulator and supporting me in the workshop. Thanks to my technical manager at Saab, Christer Zätterqvist, for all your scientific ideas and inventions. Thanks also to Mats Danielsson, who took me into the department and solved the administrative problems. Thank you to my supervisor and examiner at KTH, Per Enqvist, for your guidance through the spring, your expertise in mathematics, and patience during the Zoom meetings. It has made this bewildering spring a little easier. A final thank you to my always supportive mother and partner. Thank you forbeing there and always being there for me. You have made me the engineer I now leave school for. Thanks for all the support over the years, thanks for always saying that I should not give up, no matter how difficult the education was. This has been an amazing journey. And now it’s over. Thanks! Ebba Lindgren Stockholm, June 2020 iii Acronyms AAM Anti-Aircraft Missile or Air-to-Air Missile ABS Acrylonitrile Butadiene Styrene AECM Airborne Expendable Countermeasure AM Additive Manufacturing CALTECH California Institute of Technology CMDS Countermeasure Dispenser System DAQ Data Acquisition DoD Department of Defense EW Electronic Warfare IR Infrared JPL Jet Propulsion Laboratory MANPADS Man-Portable Air-Defense Systems MIPS Mechanical Impulse Pyro Shock Simulator MTV Magnesium, Teflon and Viton NASA National Aeronautics and Space Administration POD Plug On Device RF Radio Frequency SAM Surface-to-Air Missiles SDS Smart Dispenser System SRS Shock Response Spectrum UV Ultraviolet iv Contents 1 Introduction 1 1.1 Background .................................. 1 1.2 Motivation ................................... 3 1.3 Aim, Purpose and Goal ........................... 3 1.4 Research Questions .............................. 4 1.5 Methodology ................................. 4 1.6 Ethics and Stakeholders ........................... 5 1.7 Delimitations ................................. 5 1.7.1 Delimitations on Available Information ............... 5 1.7.2 Delimitations on Modeling ...................... 6 1.7.3 Delimitations on Designing ..................... 7 1.8 Outline .................................... 8 2 Theoretical Background 10 2.1 Pyrotechnic Flares .............................. 10 2.1.1 Schematic View of a Pyrotechnic Flare . 10 2.1.2 Recoil Motion Sequence of Flares . 12 2.2 Theory of Recoil Motion ........................... 13 2.2.1 Theoretical Assumption ....................... 13 2.2.2 Force Modeling of Flare ....................... 14 2.2.3 Mathematical Model of Recoil .................... 15 2.2.4 Recoil Motion Profile by Le Duc . 18 2.3 Mechanical Shock ............................... 20 2.3.1 Standard Shock Machines ...................... 20 2.3.2 Shock Testing Requirement ..................... 21 2.4 Pyrotechnic Shock .............................. 21 2.4.1 Pyroshock Applications
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages94 Page
-
File Size-