Statistical Analysis of the X-Ray Morphology of Galaxy Clusters

Statistical Analysis of the X-Ray Morphology of Galaxy Clusters

Statistical analysis of the X-ray morphology of galaxy clusters Alexandra Weißmann München 2013 Statistical analysis of the X-ray morphology of galaxy clusters Alexandra Weißmann Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Alexandra Weißmann aus Wien, Österreich München, den 11.10.2013 Erstgutachter: Prof. Dr. Hans Böhringer Zweitgutachter: Prof. Dr. Ortwin Gerhard Tag der mündlichen Prüfung: 9.12.2013 Contents Zusammenfassung xiii Summary xv Preamble 1 1 Galaxy clusters 3 1.1 Intraclustermedium. .. .. .. .. .. .. .. .. 5 1.1.1 X-rayemission ............................. 5 1.1.2 Coolcoreclusters............................ 8 1.2 Massestimates ................................. 9 1.2.1 Hydrostaticmassestimates. 10 1.2.2 X-rayscalingrelations . 11 1.2.3 Othermassestimationmethods . 14 1.3 Clustersascosmologicalprobes . .... 16 1.3.1 Structureformationtheory . 16 1.3.2 Clustermassfunction. 18 1.3.3 Othercosmologicaltests . 19 2 Cluster substructure and morphology 21 2.1 Substructure on differentscales......................... 22 2.2 Morphologicalanalysis . .. 26 2.3 Impact of merging on the dynamics and morphology of galaxyclusters. 31 3 X-ray observatories and data analysis 37 3.1 XMM-Newton .................................. 37 3.2 Chandra ..................................... 40 3.3 X-raydatareduction .............................. 41 4 Studying the properties of galaxy cluster morphology estimators 45 4.1 Introduction................................... 46 4.2 Substructureparameters. ... 47 4.3 Sampleofsimulatedclusters . ... 49 4.4 Study of thesystematicsof substructuremeasures . .......... 50 4.4.1 Studyofshotnoisebiasanduncertainties . ..... 50 vi Contents 4.4.2 Significancethreshold . 54 4.4.3 Biascorrectionmethod. 56 4.4.4 Testingofthemethod.. .. .. .. .. .. .. 58 4.4.5 EffectoftheX-raybackground. 58 4.5 Morphology................................... 61 4.6 Clustersample ................................. 63 4.7 Dataanalysis .................................. 65 4.7.1 XMM-Newton datareduction...................... 65 4.7.2 Structureparameters .. .. .. .. .. .. .. 65 4.8 Morphologicalanalysisof80observedclusters . ......... 66 4.8.1 Improvedstructureestimator . .. 66 4.9 Discussion.................................... 68 4.9.1 Substructureestimationandbiascorrection . ....... 68 4.9.2 Morphologicalanalysisofclustersample . ..... 71 4.10Conclusions................................... 74 4.11Appendix .................................... 76 4.11.1 Tables.................................. 76 4.11.2 Gallery ................................. 79 5 Probing the evolution of the substructure frequency in galaxy clusters up to z ∼ 1 83 5.1 Introduction................................... 84 5.2 Observationsanddatareduction . .... 85 5.2.1 Low-z clustersample.......................... 85 5.2.2 High-z clustersamples ......................... 86 5.2.3 Datareduction ............................. 88 5.3 Morphologicalanalysis . .. 90 5.4 Dataquality................................... 91 5.4.1 Degrading of high-quality low-z observations . 92 5.5 Results...................................... 93 5.5.1 P3/P0 − z relation ........................... 94 5.5.2 w − z relation.............................. 96 5.6 Discussion.................................... 97 5.6.1 Comparisonwithpreviousstudies . .. 99 5.6.2 Effectofcoolcores........................... 100 5.7 Conclusions................................... 101 6 Morphological analysis of galaxy clusters using the asymmetry parameter 107 6.1 Introduction................................... 108 6.2 Simulations ................................... 109 6.3 Asymmetryparameter ............................. 110 6.3.1 Morphologicalboundary . 110 6.3.2 Dependenceonthepixelsize. 111 6.4 Studyofshotnoisebias. .. .. .. .. .. .. .. 113 6.4.1 Noisecorrection ............................ 114 Contents vii 6.4.2 Influenceofbinning . .. .. .. .. .. .. .. 117 6.5 Observationsanddatareduction . .... 118 6.5.1 Clustersamples............................. 118 6.5.2 Datareduction ............................. 119 6.5.3 Dataquality............................... 120 6.6 Evolutionofthesubstructurefrequency . ....... 121 6.7 Combinationwithothermorphologyestimators . ........ 122 6.8 Discussion.................................... 124 6.9 Conclusions................................... 126 7 Conclusions 129 A Chandra data reduction pipeline 133 Bibliography 139 Acknowledgements 151 viii Contents List of Figures 1.1 CompositeimageoftheBulletCluster . ..... 4 1.2 Galaxy cluster X-ray spectra for differentplasmatemperatures . 6 1.3 Coolingrateasafunctionoftemperature. ....... 7 1.4 Emission measure and X-ray surface brightness profiles for cool core and non- coolcoreclusters ................................ 8 1.5 Comparison of weak lensing (MWL) and hydrostatic mass estimates (MX) .. 11 1.6 L − T relations ................................. 13 1.7 Comparison of the observed cluster mass function with predictions from cos- mologicalmodels ................................ 19 1.8 Constraints on ΩM and σ8 in a flat ΛCDMcosmology. 20 2.1 Examplesofsubstructuresinclustercores . ........ 23 2.2 Substructuresonlargescales . .... 25 2.3 X-raycontoursforfourmorphologicaltypes . ........ 27 2.4 Power ratios computed in differentapertures. 29 2.5 Evolution of the hydrostatic disequilibrium and the cluster mass during the mergingprocess................................. 32 2.6 Evolution of the merging system in X-ray scaling relations .......... 35 3.1 XMM-Newton telescopeconfiguration . 38 3.2 Lightpath inthe XMM-Newton telescopes for the EPIC MOS and pn cameras 39 3.3 ComparisonoftheCCDarraysofEPICMOSandpn . ... 39 3.4 Illustration of the Chandra X-rayobservatory . 41 3.5 SchematicviewoftheACISCCDarrays. ... 42 4.1 Comparison of 80 clusters observed with XMM-Newton and 121 simulated X-ray cluster images in the P3/P0 − w plane ................. 50 4.2 A relaxed and a disturbed simulated cluster X-ray image with different noise levels ...................................... 51 4.3 P3/P0 distribution (reflecting the bias) for different structured clusters and counts...................................... 52 4.4 Dependence of the bias as a function of P3/P0ideal and wideal ......... 55 4.5 Significance S of the P3/P0 and w measurements for differentcounts . 56 4.6 Illustrationoftheprobabilityofanegativebias . ........... 59 4.7 Background and bias corrected P3/P0 as a function of P3/P0ideal ....... 61 x List of Figures 4.8 Background and noise corrected center shifts as a function of wideal ...... 61 4.9 Example gallery of clusters visually classified as essentially relaxed and dis- turbed ...................................... 62 4.10 Motivation for the simple and morphological boundaries for P3/P0 and w .. 63 4.11 Center shift histogram of all simulated clusters defining the w boundary . 64 4.12 Example of cluster images classified using the w boundary .......... 64 4.13 P3/P0 − w planeforall80observedclusters. 67 4.14 Comparison of the P3/P0profileofA115,theBulletClusterandA2204 . 68 4.15 Relation between the significant peak (S > 0) of the P3/P0 profile and the center shift parameter for differentmorphologies . 69 4.16 Histogram for all four morphological types showing the position of P3/P0max 73 4.17 Galleryofclustersclassifiedasregular . ......... 79 4.18 Gallery ofclustersclassified as intermediate . ........... 80 4.19 Galleryofclustersclassifiedascomplex . ........ 81 4.20 Galleryofclustersclassifiedasdouble . ........ 81 5.1 Redshift distribution of the low-z and high-z samples ............. 86 5.2 Examples of the background-included, point-source-corrected smoothed X-ray images of the low-z sample........................... 87 5.3 Examples of the background-included, point-source-corrected smoothed X-ray images of the high-z samples.......................... 88 5.4 Overview of the net photon counts distribution within r500 of the low-z and high-z samples ................................. 92 5.5 Undegraded P3/P0 − z relation......................... 95 5.6 Degraded P3/P0 − z relation .......................... 96 5.7 Undegraded w − z relation ........................... 98 5.8 Comparisonwithpreviousstudies . .... 100 6.1 Distribution of the asymmetry parameter A for simulated ideal cluster images 111 6.2 Dependence of A onthebinfactorforideal simulatedclusterimages . 112 6.3 Dependence of A onthephotonstatistics. 113 6.4 A as a function of the smoothing kernel in units of r500 for ideal cluster images 115 6.5 Performance of the A parameter after smoothing with a kernel of 0.05 r500 for the mean photon statistics of the high-z 400SD and low-z sample . 116 6.6 Performance of the A parameter after binning for the mean photon statistics of the high-z 400SD and low-z sample ..................... 117 6.7 A−z relation using smoothed poissonized degraded low-z and smoothed high-z observations................................... 122 6.8 Comparison of P3/P0, w and A for the low-z sample ............. 125 A.1 Chandra datareductionpipelineflowchart . 134 List of Tables 1.1 Characteristical properties of galaxy clusters . ............ 5 3.1 Characteristics of the Chandra ACIS-I and XMM-Newton MOS and pn detectors relevantforimaging............................... 38 4.1 Statistical results on P3/P0 and w for poissonized simulated cluster images . 53 4.2 Dependence of the significance of the signal on total number counts (net counts within r500) for P3/P0c and wc ..................... 57 4.3 Overview of the boundaries for P3/P0

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    167 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us