From Small Molecules to Enzymes and 2D Materials: a Computational Chemistry Journey Into Chemical Reactivity

From Small Molecules to Enzymes and 2D Materials: a Computational Chemistry Journey Into Chemical Reactivity

From small molecules to enzymes and 2D materials: A computational chemistry journey into chemical reactivity In 1998 John Pople and Walter Kohn shared the Nobel Prize in Chemistry for the development of wave-function theory (WFT) and density-functional theory (DFT), respectively. In 2013 the Chemistry Nobel Prize was awarded to Martin Karplus, Michael Levitt, and Arieh Warshel for the development of multi-scale theories. These electronic structure methods cover a wide range of accuracy and applicability. WFT methods are very accurate and are applicable to small systems (containing Fig. 1. Molecular mechanism of dozens of atoms, Fig. 1), DFT methods are less accurate and the antioxidant Carnosine are applicable to larger systems containing hundreds of atoms (Fig. 2), and multi-scale methods are the least accurate but are applicable to very large systems such as proteins and enzymes (Fig. 3). In this computational chemistry journey, we will use this entire range of electronic structure methods to explore the molecular mechanisms of a variety of chemical phenomena. We use WFT methods to investigate molecular mechanisms underlying chemical reactivity in organic Fig. 2. Catalytic reactions on graphene nanoflakes. and inorganic systems,1–5 and to computationally design potent antioxidants.6,7 We use DFT methods to explore carbon chemistry and 2D materials,8,9 and multi-scale methods to decipher the enzymatic mechanism of cholesterol oxidase.10,11 References: [1] A. A. Kroeger, A. Karton, J. Org. Chem. 84, 11343 (2019). [2] A. A. Kroeger, A. Karton, J. Comput. Chem. 40, 630 (2019). [3] A. Baroudi, A. Karton, Org. Chem. Front. 6, 725 (2019). [4] A. Karton, M. Brunner, M.J. Howard, G.G. Warr, R. Atkin, ACS Sustain. Chem. Eng. 6, 4115 (2018). Fig. 3. Enzymatic reaction mechanism of cholesterol [5] V.S. Thimmakondu, A. Karton, Phys. Chem. Chem. oxidase Phys. 19, 17685 (2017). [6] A. Karton, R.J. O’Reilly, D.I. Pattison, M.J. Davies, L. Radom, J. Am. Chem. Soc. 134, 19240 (2012). [7] F. Sarrami, L.-J. Yu, A. Karton, J. Comput. Aided Mol. Des. 31, 905 (2017). [8] K. Alhameedi, T. Hussain, D. Jayatilaka, A. Karton, Carbon 152, 344 (2019). [9] T. Hussain, B. Mortazavi, H. Bae, T. Rabczuk, H. Lee, A. Karton, Carbon 147, 199 (2019). [10] E. Golden, L.-J. Yu, F. Meilleur, M.P. Blakeley, A.P. Duff, A. Karton, A. Vrielink, Sci. Rep. 7, 40517 (2017). [11] L.-J. Yu, E. Golden, N. Chen, Y. Zhao, A. Vrielink, A. Karton, Sci. Rep. 7, 17265 (2017). .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us