Interpolation and Approximation Interpolation · Least-Squares Techniques Interpolation General & Polynomial Interpolation Interpolation Problem

Interpolation and Approximation Interpolation · Least-Squares Techniques Interpolation General & Polynomial Interpolation Interpolation Problem

Geometric Modeling Summer Semester 2012 Interpolation and Approximation Interpolation · Least-Squares Techniques Interpolation General & Polynomial Interpolation Interpolation Problem First approach to modeling smooth objects: • Given a set of points along a curve or surface • Choose basis functions that span a suitable function space . Smooth basis functions . Any linear combination will be smooth, too • Find a linear combination such that the curve/surface interpolates the given points 3 / 85 Interpolation Problem Different types of interpolation: • Nearest • Linear • Polynomial 4 / 85 General Formulation Settings: ds • Domain R , mapping to R. f (x) • Looking for a function f: R. x2 • Basis set: B = {b1,...,bn}, bi: R. x1 • Represent f as linear combination of basis functions: n 1 f (x) b (x) , i.e. f is just determined by λ i i λ i1 n ds • Function values: {(x1, y1), ..., (xn, yn)}, (xi, yi) R R • We want to find such that: i {1,...,n}: fλ (xi ) yi 5 / 85 Illustration R f: R R y1 b2 y3 b1 y2 b3 x1 x2 x3 1D Example n f (x) b (x) i i i {1,...,n}: f (xi ) yi i1 6 / 85 Solving the Interpolation Problem Solution: linear system of equations • Evaluate basis functions at points xi: n i {1,...,n}: b (x ) y i i i i i1 • Matrix form: b (x ) b (x ) y 1 1 n 1 1 1 b1(xn ) bn(xn )n yn 7 / 85 Illustration y2 = R 3 b 2 y1 = y3 = b1 3 b3 2 2 3 1 2 1 1 x1 x2 x3 interpolation problem linear system 8 / 85 Illustration y2 = R 3 b 2 y1 = y3 = b1 3 b3 2 2 3 1 2 1 1 x1 x2 x3 interpolation problem linear system anything in between does not matter (determined by basis only) 9 / 85 Example Example: Polynomial Interpolation • Monomial basis B = {1, x, x2, x3, ..., xn-1} • Linear system to solve: 1 x x n1 1 1 y n1 1 1 1 x2 x2 “Vandermonde Matrix” y n1 n n 1 xn xn 10 / 85 Example with Numbers Example with numbers • Quadratic monomial basis B = {1, x, x2} • Function values: {(0,2), (1,0), (2,3)} [(x, y)] • Linear system to solve: 1 0 0 2 1 (2,3) 1 1 12 0 (0,2) 1 2 43 3 • Result: 1 = 2, 2 = -9/2, 3 = 5/2 (1,0) 11 / 85 Condition Number... The interpolation problem is ill conditioned: • For equidistant xi, the condition number of the Vandermode matrix grows exponentially with n (maximum degree+1 = number of points to interpolate) cond 2,5E+17 cond 1,0E+18 1,0E+16 2,0E+17 1,0E+14 1,0E+12 1,5E+17 1,0E+10 1,0E+08 1,0E+17 1,0E+06 (logarithmic) 5,0E+16 1,0E+04 1,0E+02 0,0E+00 1,0E+00 0 5 10 15 20 25 0 5 10 15 20 25 #points #points 12 / 85 Why ill-conditioned? • Solution with inverse Vandermonde matrix: Mx = y => x = M-1y = (V D-1 UT)y 2.5 0 0 0 0 1.1 0 0 D: 0 0 0.9 0 0 0 0 0.000000001 • Condition number defined as a ratio between largest and 2,5E+17smallest singular value: max /min cond 2,0E+17 1,5E+17 1,0E+17 5,0E+16 0,0E+00 0 5 10 15 20 25 #points Why ill-conditioned? Monomial Basis: • Functions become 2 1,8 increasingly indistinguishable 1,6 with degree (non orthogonal) 1,4 1,2 • Only differ in growing rate 1 (xi growth faster than xi-1) 0,8 0,6 • For higher degrees numerical 0,4 0,2 precision became a key factor 0 0 0,5 1 1,5 2 Monomial basis 14 / 85 The Cure... This problem can be fixed: • Use orthogonal polynomial basis • How to get one? e.g. Gram-Schmidt orthogonalization (see assignment sheet #1) • Legendre polynomials – orthonormal on [-1..1] • Much better condition of the linear system (converges to 1) 16 / 85 However... This does not fix all problems: • Polynomial interpolation is instable . “Runge’s phenomenon”: Oscillating behavior . Small changes in control points can lead to very different result. xi sequence important. • Weierstraß approximation theorem: . Smooth functions (C0) can be approximated arbitrarily well with polynomials . However: Need carefully chosen construction for convergence . Not useful in practice 17 / 85 Runge’s Phenomenon 18 / 85 Conclusion Conclusion: Need a better basis for interpolation For example, piecewise polynomials will work much better % Splines 19 / 85 Approximation (Reweighted) Least-squares, Scattered Data Approximation Common Situation: • We have many data points, they might be noisy • Example: Scanned data • Want to approximate the data with a smooth curve / surface What we need: • Criterion – what is a good approximation? • Methods to compute this approximation 21 / 85 Least-Squares We assume the following scenario: • We have a set of function values yi at positions xi. (1D 1D for now) • The independent variables xi are known exactly. • The dependent variables yi are known approximately, with some error. • The error is normal distributed, independent, and with the same distribution at every point (normal noise). • We know the class of functions from which the noisy samples were taken. 23 / 85 Situation y 1 yn y2 x1 x2 xn Situation: • Original sample points taken at xi from original f. • Unknown Gaussian noise added to each yi. • Want to estimated reconstructed f~. 24 / 85 Maximum Likelihood Estimation Goal: • Maximize the probability that the data originated from the reconstructed curve f~ fits the points • “Maximum likelihood estimation” 1 x 2 p (x) exp , 2 2π 2 Gaussian normal distribution 25 / 85 Maximum Likelihood Estimation ~ n ~ n 1 ( f (x ) y )2 arg max N ( f (x ) y ) arg max exp i i ~ 0, i i ~ 2 f i1 f i1 2π 2 ~ n 1 ( f (x ) y )2 arg max ln exp i i ~ 2 f i1 2π 2 ~ n 1 ( f (x ) y )2 arg max ln i i ~ 2 f i1 2π 2 ~ n ( f (x ) y )2 arg min i i ~ 2 f i1 2 n ~ arg min ( f (x ) y )2 ~ i i f i1 26 / 85 Maximum Likelihood Estimation ~ n ~ n 1 ( f (x ) y )2 arg max N ( f (x ) y ) arg max exp i i ~ 0, i i ~ 2 f i1 f i1 2π 2 ~ n 1 ( f (x ) y )2 arg max ln exp i i ~ 2 f i1 2π 2 ~ n 1 ( f (x ) y )2 arg max ln i i ~ 2 f i1 2π 2 ~ n ( f (x ) y )2 arg min i i ~ 2 f i1 2 n ~ arg min ( f (x ) y )2 ~ i i f i1 27 / 85 Least-Squares Approximation This shows: • The solution with maximum likelihood in the considered scenario (y-direction, iid Gaussian noise) minimizes the sum of squared errors. Next: Compute optimal coefficients ~ k • Linear ansatz: f x: j bj x j1 • Task: determine optimal i 29 / 85 Maximum Likelihood Estimation Compute optimal coefficients: 2 n ~ n k arg min ( f (x ) y )2 arg min b (x ) y i i j j i i λ i1 λ i1 j1 n T 2 arg minλ b(xi ) yi λ i1 n n n arg minλ T b(x )bT(x ) λ 2 y λ Tb(x ) y 2 i i i i i λ i1 i1 i1 xTAx bx c Quadratic optimization problem 30 / 85 Critical Point 1 b1(x) bi (x1 ) y1 λ : k entries , b(x): k entries , bi : n entries, y : n entries k bk (x) bi (xn ) yn n n n λ T b(x )bT (x ) λ 2 y λ Tb(x ) y 2 λ i i i i i i1 i1 i1 y Tb n 1 T 2b(xi )b (xi )λ 2 i1 T y bk We obtain a linear system of equations: y Tb n 1 T b(xi )b (xi )λ i1 T y bk 31 / 85 Critical Point This can also be written as: b1 ,b1 b1 ,bk 1 y,b1 b ,b b ,b y,b k 1 k k k k with: n bi ,b j : bi (xt )bj (xt ) t 1 n y,bi : bi (xt ) yt t 1 32 / 85 Summary Statistical model yields least-squares criterion: n n ~ ~ 2 arg max N0, ( f (xi ) yi ) arg min ( f (x ) y ) ~ ~ i i f i1 f i1 Linear function space leads to quadratic objective: 2 ~ k n k f x : b x arg min b (x ) y j j j j i i j1 λ i1 j1 Critical point: linear system n b ,b b ,b y,b b ,b : b (x )b (x ) 1 1 1 k 1 1 i j i t j t t 1 with: n y,b : b (x ) y bk ,b1 bk ,bk k y,bk i i t t t 1 33 / 85 Variants Weighted least squares: • In case the data point’s noise has different standard deviations at the different data points • This gives a weighted least squares problem • Noisier points have smaller influence 34 / 85 Same procedure as prev. slides... ~ n ~ n 1 ( f (x ) y )2 arg max N ( f (x ) y ) arg max exp i i ~ i i ~ 2 f i1 f i1 i 2π 2 i ~ n 1 ( f (x ) y )2 arg max log exp i i ~ 2 f i1 i 2π 2 i ~ n 1 ( f (x ) y )2 arg max log i i ~ 2 f i1 i 2π 2 i ~ n ( f (x ) y )2 arg min i i ~ 2 f i1 2 i n 1 ~ arg min ( f (x ) y )2 ~ 2 i i f i1 i weights 35 / 85 Result Linear system for the general case: n b ,b b ,b y,b b ,b : b (x )b (x ) 2 x 1 1 1 n 1 1 i j i i j i i with: l1 n y,b : b (x ) y 2 x bn ,b1 bn ,bn n y,bn i i i i i l1 2 1 1 xi 2 , i.e.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    59 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us