View This Volume's Front and Back Matter

View This Volume's Front and Back Matter

Selected Title s i n Thi s Serie s 48 Yoa v Benyamin i an d Jora m Lindenstrauss , Geometri c nonlinea r functiona l analysis , Volume 1 , 200 0 47 Yur i I . Manin , Frobeniu s manifolds , quantu m cohomology , an d modul i spaces , 199 9 46 J . Bourgain , Globa l solution s o f nonlinear Schrodinge r equations , 199 9 45 Nichola s M . Kat z an d Pete r Sarnak , Rando m matrices , Frobeniu s eigenvalues , an d monodromy, 199 9 44 Max-Alber t Knus , Alexande r Merkurjev , an d Marku s Rost , Th e boo k o f involutions, 199 8 43 Lui s A . Caffarell i an d Xavie r Cabre , Full y nonlinea r ellipti c equations , 199 5 42 Victo r Guillemi n an d Shlom o Sternberg , Variation s o n a theme b y Kepler , 199 0 41 Alfre d Tarsk i an d Steve n Givant , A formalization o f set theor y without variables , 198 7 40 R . H . Bing , Th e geometri c topolog y o f 3-manifolds , 198 3 39 N . Jacobson , Structur e an d representation s o f Jordan algebras , 196 8 38 O . Ore , Theor y o f graphs, 196 2 37 N . Jacobson , Structur e o f rings, 195 6 36 W . H . Gottschal k an d G . A . Hedlund , Topologica l dynamics , 195 5 35 A . C . Schaeffe r an d D . C . Spencer , Coefficien t region s fo r Schlich t functions , 195 0 34 J . L . Walsh , Th e locatio n o f critical point s o f analytic an d harmoni c functions , 195 0 33 J . F . Ritt , Differentia l algebra , 195 0 32 R . L . Wilder, Topolog y o f manifolds , 194 9 31 E . Hill e an d R . S . Phillips , Functiona l analysi s an d semigroups , 195 7 30 T . Rado , Lengt h an d area , 194 8 29 A . Weil , Foundation s o f algebrai c geometry , 194 6 28 G . T . Whyburn , Analyti c topology , 194 2 27 S . Lefschetz , Algebrai c topology , 194 2 26 N . Levinson , Ga p an d densit y theorems , 194 0 25 Garret t Birkhoff , Lattic e theory , 194 0 24 A . A . Albert , Structur e o f algebras, 193 9 23 G . Szego , Orthogona l polynomials , 193 9 22 C . N . Moore , Summabl e serie s an d convergenc e factors , 193 8 21 J . M . Thomas , Differentia l systems , 193 7 20 J . L . Walsh, Interpolatio n an d approximatio n b y rationa l function s i n the comple x domain, 193 5 19 R . E . A . C . Pale y an d N . Wiener , Fourie r transform s i n the comple x domain , 193 4 18 M . Morse , Th e calculu s o f variations i n the large , 193 4 17 J . M . Wedderburn , Lecture s o n matrices , 193 4 16 G . A . Bliss , Algebrai c functions , 193 3 15 M . H . Stone , Linea r transformation s i n Hilber t spac e an d thei r application s t o analysis , 1932 14 J . F . Ritt , Differentia l equation s fro m th e algebrai c standpoint , 193 2 13 R . L . Moore , Foundation s o f point se t theory , 193 2 12 S . Lefschetz , Topology , 193 0 11 D . Jackson , Th e theor y o f approximation, 193 0 10 A . B . Coble , Algebrai c geometr y an d thet a functions , 192 9 9 G . D . Birkhoff , Dynamica l systems , 192 7 8 L . P . Eisenhart , Non-Riemannia n geometry , 192 7 7 E . T . Bell , Algebrai c arithmetic , 192 7 (Continued in the back of this publication) This page intentionally left blank Geometri c Nonlinea r Functiona l Analysi s Volum e 1 This page intentionally left blank http://dx.doi.org/10.1090/coll/048 America n Mathematica l Societ y Colloquiu m Publication s Volum e 48 Geometri c Nonlinea r Functiona l Analysi s Volum e 1 Yoa v Benyamin i Jora m Lindenstraus s America n Mathematica l Societ y Providence , Rhod e Islan d Editorial Boar d Joan S . Birma n Susan J . Priedlander , Chai r Stephen Lichtenbau m 1991 Mathematics Subject Classification. Primar y 46-XX ; Secondary 22-XX , 28-XX , 47-XX , 52-XX , 54-XX . ABSTRACT. Thi s volum e i s devoted t o the stud y o f uniforml y continuou s and , i n particular , Lip - schitz function s betwee n Banac h spaces . Als o studied i s the related questio n o f classifying Banac h spaces an d thei r subset s (mainl y spheres ) wit h respec t t o unifor m o r Lipschit z classification . Library o f Congres s Cataloging-in-Publicatio n Dat a Benyamini, Yoav , 1943 - Geometric nonlinea r functiona l analysi s / Yoa v Benyamini , Jora m Lindenstrauss . p. cm . — (America n Mathematical Societ y colloquium publications, ISS N 0065-9258 ; v. 48) Includes bibliographica l references . ISBN 0-8218-0835- 4 (hardcove r : alk . paper ) 1. Nonlinea r functiona l analysis . I . Lindenstrauss , Joram , 1936 - . II . Title . III . Series : Colloquium publication s (America n Mathematica l Society ) ; v. 48 . QA321.5.B46 200 0 515'.7-dc21 99-1773 4 CIP Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapter fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , o r multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission should be addressed to the Assistant to the Publisher, America n Mathematical Society , P. O. Bo x 6248 , Providence , Rhod e Islan d 02940-6248 . Request s ca n als o b e mad e b y e-mai l t o reprint-permissionQams.org. © 200 0 b y the America n Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o the Unite d State s Government . Printed i n the Unite d State s o f America . @ Th e pape r use d i n this boo k i s acid-free an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . Visit th e AM S hom e pag e at URL : http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 0 5 0 4 0 3 0 2 0 1 0 0 Dedicated t o A . Dvoretzky, our teacher , colleagu e an d frien d Founder o f the functiona l analysi s schoo l i n Israe l This page intentionally left blank Contents Introduction 1 1. Th e Subjec t Matte r 1 2. Th e Book . Conventions , Prerequisites , Etc . 7 3. Acknowledgement s 9 Chapter 1 . Retractions , Extension s an d Selection s 1 1 1. Absolut e Lipschit z Retract s 1 1 2. Extensio n o f Maps on Hilbert Spac e 1 8 3. Michael' s Selectio n Theore m 2 1 4. Lipschit z an d Unifor m Selection s 2 6 5. Note s an d Remark s 3 1 Chapter 2 . Retractions , Extension s an d Selection s (Specia l Topics ) 3 5 1. Approximatio n o f Uniformly Continuou s Function s 3 5 2. Th e Neares t Poin t Ma p 4 0 3. Th e Contractio n Extensio n Propert y 4 4 4. Th e Steine r Poin t 4 8 5. Simultaneousl y Continuou s Map s 5 3 6. Note s an d Remark s 5 8 Chapter 3 . Fixe d Point s ' 6 1 1. Continuou s Map s 6 1 2. Lipschit z Map s 6 3 3. Nonexpansiv e Map s 6 5 4. Approximatio n o f Fixed Point s 7 0 5. Note s an d Remark s 7 9 Chapter 4 . Differentiatio n o f Conve x Functions 8 3 1. Basi c Definition s an d Result s 8 3 2. Conve x Functions 8 5 3. Note s an d Remark s 9 6 Chapter 5 . Th e Radon-Nikody m Propert y 9 9 1. Vecto r Measure s an d Integratio n o f Vector-Valued Function s 9 9 2. Th e Radon-Nikody m Propert y 10 2 3. Differentiability , Tree s and the RNP 11 0 4. Example s Relate d t o the RNP 11 4 5. Note s an d Remark s 12 1 Chapter 6 . Negligibl e Set s and Gateau x Differentiabilit y 12 5 1. Haa r Nul l Set s 12 5 2. Gaussia n Measure s 13 5 x CONTENT S 3. Gaus s Nul l Set s 14 1 4. Gateau x Differentiabilit y o f Lipschitz Function s 15 3 5. Example s Relate d t o Freche t Differentiabilit y 15 6 6.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    49 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us