Francesca Vidotto, Planck Stars

Francesca Vidotto, Planck Stars

Planck Stars the final fate of quantum no-singula black hoes and its phenoenoogical cosequences Francesca Vidotto UPV/EHU - Bilbao SINGULARITIES OF GENERAL RELATIVITY AND THEIR QUANTUM FATE Warsaw - May 23rd, 2018 Planck Stars the final fate of quantum no-singula black hoes and its phenoenoogical cosequences Francesca Vidotto UPV/EHU - Bilbao SINGULARITIES OF GENERAL RELATIVITY AND THEIR QUANTUM FATE Warsaw - May 23rd, 2018 QUANTAQUANTA OF OFSPACE SPACETIME It is a theory about quanta of spacetime Each quantum is Lorentz invariant The states are boundary states at fixed time SL(2, C) SU(2) ! i The physical phase space is spanned by SU(2) group variables L⌅ = L ,i=1, 2, 3 l { l} gravitational field operator (tetrad) SU(2) generators i i Geometry is quantized: AΣ = LlLl. l Σ ⇥ ∈ 2 2 i j k VR = Vn,Vn = ijkLlL Ll” . 9 | l | n R ∈ Discrete spectra: minimal non-zero eigenvalue Spinfoam & Singularities Francesca Vidotto QUANTIZATION OF THE CLASSICAL ACTION 1 GR action S[e, !]= e e F ⇤[!]+ e e F [!] (Holst term) ^ ^ γ ^ ^ Z Z BF theory S[e, ω]= B[e] F [ω] ^ Z 1 Canonical variables ⇥,B=(e e)⇤ + (e e) ^ γ ^ a i On the boundary n = e n nie =0 SL(2, C) SU(2) i i a ! ni =(1, 0, 0, 0) B (K = nB, L = nB⇤) ! Simplicity constraint K<latexit sha1_base64="0y/FFa7mathXZtw2BIirz4YmJ9k=">AAAB8XicdZDLSgMxFIYz9VbrrerSTbAIrkqmldYulIIbQRcV7AXboWTSTBuaZIYkI5Shb+HGhSJufRt3vo2ZtoKK/hD4+M855JzfjzjTBqEPJ7O0vLK6ll3PbWxube/kd/daOowVoU0S8lB1fKwpZ5I2DTOcdiJFsfA5bfvji7TevqdKs1DemklEPYGHkgWMYGOtu6uz3hALgeF1P19ARVQulVEFWkCVEqrNoFyq1qBrIVUBLNTo5997g5DEgkpDONa666LIeAlWhhFOp7lerGmEyRgPadeixIJqL5ltPIVH1hnAIFT2SQNn7veJBAutJ8K3nQKbkf5dS82/at3YBKdewmQUGyrJ/KMg5tCEMD0fDpiixPCJBUwUs7tCMsIKE2NDytkQvi6F/0OrVHRR0b05KdTPF3FkwQE4BMfABVVQB5egAZqAAAkewBN4drTz6Lw4r/PWjLOY2Qc/5Lx9At+VkGE=</latexit> = γL Spinfoam & Singularities Francesca Vidotto QUANTIZATION OF THE CLASSICAL ACTION 1 GR action S[e, !]= e e F ⇤[!]+ e e F [!] (Holst term) ^ ^ γ ^ ^ Z Z BF theory S[e, ω]= B[e] F [ω] ^ Z 1 Canonical variables ⇥,B=(e e)⇤ + (e e) ^ γ ^ a i On the boundary n = e n nie =0 SL(2, C) SU(2) i i a ! ni =(1, 0, 0, 0) B (K = nB, L = nB⇤) ! <latexit sha1_base64="ndQ2aEbhq4qkZGdxGHkiP5YSQmg=">AAAB7XicdVDLSgMxFM34rPVVdekmWARXQ6ZVp26k4MZlBfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow1laXlldWy9sFDe3tnd2S3v7LS1TRWiTSC5VJ8SaciZo0zDDaSdRFMchp+1wfJX77XuqNJPi1kwSGsR4KFjECDZWavVG2GTTfqmM3Nq5V/U9iFyEKtWL2oz4Nf8MepbkKIMFGv3Se28gSRpTYQjHWnc9lJggw8owwum02Es1TTAZ4yHtWipwTHWQza6dwmOrDGAklS1h4Ez9PpHhWOtJHNrOGJuR/u3l4l9eNzVRLciYSFJDBZkvilIOjYT563DAFCWGTyzBRDF7KyQjrDAxNqCiDeHrU/g/aVVcD7nezWm5frmIowAOwRE4AR7wQR1cgwZoAgLuwAN4As+OdB6dF+d13rrkLGYOwA84b58+Bo+O</latexit> <latexit sha1_base64="ndQ2aEbhq4qkZGdxGHkiP5YSQmg=">AAAB7XicdVDLSgMxFM34rPVVdekmWARXQ6ZVp26k4MZlBfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow1laXlldWy9sFDe3tnd2S3v7LS1TRWiTSC5VJ8SaciZo0zDDaSdRFMchp+1wfJX77XuqNJPi1kwSGsR4KFjECDZWavVG2GTTfqmM3Nq5V/U9iFyEKtWL2oz4Nf8MepbkKIMFGv3Se28gSRpTYQjHWnc9lJggw8owwum02Es1TTAZ4yHtWipwTHWQza6dwmOrDGAklS1h4Ez9PpHhWOtJHNrOGJuR/u3l4l9eNzVRLciYSFJDBZkvilIOjYT563DAFCWGTyzBRDF7KyQjrDAxNqCiDeHrU/g/aVVcD7nezWm5frmIowAOwRE4AR7wQR1cgwZoAgLuwAN4As+OdB6dF+d13rrkLGYOwA84b58+Bo+O</latexit> Simplicity constraint K<latexit sha1_base64="0y/FFa7mathXZtw2BIirz4YmJ9k=">AAAB8XicdZDLSgMxFIYz9VbrrerSTbAIrkqmldYulIIbQRcV7AXboWTSTBuaZIYkI5Shb+HGhSJufRt3vo2ZtoKK/hD4+M855JzfjzjTBqEPJ7O0vLK6ll3PbWxube/kd/daOowVoU0S8lB1fKwpZ5I2DTOcdiJFsfA5bfvji7TevqdKs1DemklEPYGHkgWMYGOtu6uz3hALgeF1P19ARVQulVEFWkCVEqrNoFyq1qBrIVUBLNTo5997g5DEgkpDONa666LIeAlWhhFOp7lerGmEyRgPadeixIJqL5ltPIVH1hnAIFT2SQNn7veJBAutJ8K3nQKbkf5dS82/at3YBKdewmQUGyrJ/KMg5tCEMD0fDpiixPCJBUwUs7tCMsIKE2NDytkQvi6F/0OrVHRR0b05KdTPF3FkwQE4BMfABVVQB5egAZqAAAkewBN4drTz6Lw4r/PWjLOY2Qc/5Lx9At+VkGE=</latexit> ˆ = γˆL Boost generator Rotation generator Rovelli,Vidotto 1307.3228 Maximal acceleration: no curvature singularities! (spacetime can be geodesically incomplete for some artificially patched manifolds Geroch ‘68) Spinfoam & Singularities Francesca Vidotto Quantum Black Holes QuantumBlack BH EXPLOSION “ Vidotto, Rovelli 1401.6562 Rovelli Vidotto, Planck Star” quantum quantum region Francesca Vidotto Francesca B l a c k - t o - W h i t e tunnelling Quantum Black Holes QuantumBlack BH EXPLOSION “ Vidotto, Rovelli 1401.6562 Rovelli Vidotto, Planck Star” quantum quantum region Francesca Vidotto Francesca B l a c k - t o - W h i t e tunnelling Scenario 1 Quantum Black Holes Francesca Vidotto T. BANKS AND M. O'LOUGHLIN 47 AND M. O'LOUGHLIN 47 u (r, n }=e T. BANKS(2.4) tion, but here the dilaton dynamics gives rise to an infinite set of spherically symmetric solutions of the In terms of these fields the Lagrangian is source free field equations in a finite region. We have (2.4) tion, but here the dilaton dynamics gives rise to an u n }=e 2 AND M. O'LOUGHLIN 47 (r, — — T. BANKS tried to restrict the solution by assuming a cosmological S= &—g [ —u R+2u (Ba) 4(Bu) 2u e infinite set of spherically symmetric solutions of the form for the metric ds = — (dr dQ ) in- Infterms of these fields the Lagrangian is source free field equations indH+a(r)a finite region.+rWe have side the shell, but this is inconsistent with the field equa- u +Quen }=e (2.5) (2.4) triedtion,to butrestricthere thethe solutiondilaton dynamicsassuminggivesa cosmologicalrise to an (r, — — ].) — by S= &—g [ u R+2u (Ba) 4(Bu) 2u e tions. Similarly, an attempt to solutionskeep the thethree- forminfinitefor theset metricof sphericallyds = —symmetricdH+a(r) (dr +r dQof ) in- f 41 The equations Inoftermsmotionof thesefor fieldsthis theLagrangianLagrangian areis given in dimensionally conformallyfield Oatin formfinite of the metric,We have with – source free equations a region. side the shell, but this is inconsistent with the field equa- interact with (2.5) on the coarse Appendix A. Of course,+Queto find interior solutions with conformaltried to factorrestrict tiedthe solutionto the bydilaton,assumingis inconsistent.a cosmological We — — —38 — the three- S= & g [ u R+2uthe exterior(Ba) 4(Bu)extremal2u e tions. Similarly, an attempt to keep zero magnetic field to match onto T. BANKS ANDhaveM.notO'LOUGHLINbeen able to come= — with a natural 47ansatz. we The equations off motion for this Lagrangian are given in dimensionallyform for the conformallymetric ds OatdH+a(r)upform of(drthe+rmetric,dQ ) in-with dilaton solution, we set =0 in the above equation. smooth solutions exist. Appendix A. Of Qcourse, to find interior solutions with(2.5)Nonetheless,conformalside the shell,factorwebuttiedbelievethistois theinconsistentthatdilaton, withis inconsistent.the field equa-We series for the +Quefields o and (t, expanding The power Theretions.are manySimilarly,smoothan attemptsolutionsto ofkeepthe thevacuumthree- field ] is that the increase zero magnetic fieldu (r, nto}=ematch onto the exterior extremal (2.4)havetion,not butbeenhereablethe todilatoncome dynamicsup with givesa naturalrise to ansatz.an 2 from the shell towards the interior,motion foris this Lagrangian are given in to a manifold with the of a but also The equations of restricted topology 26 dilaton solution, we set Q =0 in the above equation. equationsNonetheless,dimensionallyinfinite set weofconformallysphericallybelieve thatOatsymmetricformsmoothofsolutionsthesolutionsmetric,of thewithexist. In termsA. ofOfthesecourse,fields tothe findLagrangianinterior issolutions withhemi-three-spherefield cross time.in aOurfinite matchingWe conditionshave The powerAppendixseries for the fields o and (t, expanding Thereconformalsourceare freemanyfactor smoothtiedequationsto thesolutionsdilaton, ofisregion.inconsistent.the vacuum Wefield zero magnetic field2 to match onto the —exterior —extremalfix onlyhavetriedthenotto restrictbeenvaluesabletheofsolutiontothecomemetricbyupassumingwithfunctionsa anaturalcosmologicalandansatz.dilaton from the shell towardsS= &the—g interior,[ —u R+2uis (Ba) 4(Bu) 2u e equations restricted to a manifold with the topology of a ~ ].) — u (r, n) =R (~)dilaton1—solution,f we[1+set Q(r)n=0 in+thef2(r)nabove equation. alongNonetheless,formthe timelikefor the wemetricworldbelieveds line= thatdH+a(r)of smooththe collapsing(drsolutions+r dQshell,)exist.in- leav- R (~) f, hemi-three-sphere cross time. Our matching conditions fields and expanding41 side the shell, but this is inconsistent with the field equa- The power series for2+Quethe o (t, (2.ing5) theirThere normalare many derivativessmooth solutionsundetermined.of the vacuumThusfieldthere – functions and dilaton fix only the values of the metric interact with tions. Similarly, an attempt to keep the three- on the coarse from the shell towards the interior, is ~ seems to be plentyrestrictedof torooma manifoldfor patchingwith the intopologya nonsingularof a u =R 1— (2.6) inalongequationsthe timelike world line of the collapsing shell, leav- (r, n) (~)The equations +f3(r)nof motion[1+ for(r)n+this+Lagrangianf2(r)n], are given38 Oat form of the metric, with R (~) f, vacuumhemi-three-spheredimensionallysolution. conformallycross time. Our matching conditions Appendix A. Of course, to find interior solutions with ing conformaltheir normalfactor derivativestied to the dilaton,undetermined.is inconsistent.ThusWethere we n = 2 Tofixobtainonly thesomevaluesfeelingof theformetricthe motionfunctionsofandthe dilatoncollapsing o (r, ) [ln(R (r) zero}+d,magnetic(r)n +fieldd2(~)nto match onto the exterior extremal seemshaveto notbe plentybeen ableof toroomcomefor patchingwith a naturalin a nonsingularansatz. + ~ (2.6) the arbitraryup assumption that u n) =R (~) 1— +f3(r)n (r)n ], shell alongwe3 havethe timelikemade

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us