Quaternions & Rotation in 3D Space

Quaternions & Rotation in 3D Space

Quaternions & Rotation in 3D Space Chapter 7-A1 CE 59700: Digital Photogrammetric Systems 1 Ayman F. Habib Overview • Quaternions: definition • Quaternion properties • Quaternions and rotation matrices • Quaternion-rotation matrices relationship • Spherical linear interpolation • Concluding remarks CE 59700: Digital Photogrammetric Systems 2 Ayman F. Habib Quaternions Real Part Imaginary Part i i2 j 2 k 2 ijk 1 i jk kj j j ki ik k k ij ji • The real part for a “Pure Quaternion” is zero. CE 59700: Digital Photogrammetric Systems 3 Ayman F. Habib Quaternion Multiplication ; ; • Using the rules in the previous slide, we can get the following definition for quaternion multiplication: .; CE 59700: Digital Photogrammetric Systems 4 Ayman F. Habib Quaternion Multiplication ; ; & simplify the quaternion multiplication to matrix multiplication – ortho-normal matrices. CE 59700: Digital Photogrammetric Systems 5 Ayman F. Habib Quaternion Multiplication • Unit quaternions: 1 • For unit quaternions: CE 59700: Digital Photogrammetric Systems 6 Ayman F. Habib Quaternion Properties • Quaternion conjugate: ; ∗ ; ∗ ∗ .; • For unit quaternions: ∗ ; CE 59700: Digital Photogrammetric Systems 7 Ayman F. Habib Quaternion Properties • Quaternion conjugate: ∗ ∗ ∗ ∗ ∗ ... . CE 59700: Digital Photogrammetric Systems 8 Ayman F. Habib Quaternions & Rotation Matrices • Given the following quaternions: ∗ • q is a unit quaternion. is a pure quaternion (real part is zero). 0; ∗ ∗ ; 0; .; ; CE 59700: Digital Photogrammetric Systems 9 Ayman F. Habib Quaternions & Rotation Matrices ∗ ; ; ∗ .; ∗ ; ∗ 1 • The product ∗ produces the same vector . CE 59700: Digital Photogrammetric Systems 10 Ayman F. Habib Quaternions & Rotation Matrices 0; is perpendicular to . ; 0; .; ; 0; 0; CE 59700: Digital Photogrammetric Systems 11 Ayman F. Habib Quaternions & Rotation Matrices ∗ 0; ; ∗ . .; ∗ 0; ∗ 0; 2 CE 59700: Digital Photogrammetric Systems 12 Ayman F. Habib Quaternions & Rotation Matrices ∗ 0; 2 ∗ ; 2 • From 1 & 2, one can conclude that: ∗ ∗ ; http://www.euclideanspace.com CE 59700: Digital Photogrammetric Systems 13 Ayman F. Habib Quaternions & Rotation Matrices Plane to the axis 2 ∗ &∗ are pure quaternions & ∗ are the imaginary components of & ∗. CE 59700: Digital Photogrammetric Systems 14 Ayman F. Habib Quaternions & Rotation Matrices ; ∗ ; Plane to the axis 2 ∗ &∗ are pure quaternions & ∗ are the imaginary components of & ∗. CE 59700: Digital Photogrammetric Systems 15 Ayman F. Habib Quaternions & Rotation Matrices • Any 3D rotation matrix can be represented by a rotation ( ) around a unit vector ( ). • This rotation can be defined by the following unit quaternion: cos sin sin sin 2 2 2 2 http://www.euclideanspace.com CE 59700: Digital Photogrammetric Systems 16 Ayman F. Habib Quaternions & Rotation Matrices • Rotation maintains the magnitude of a vector: ∗ . ∗ ̅∗ . ̅∗ ∗ ∗ ̅ ̅ . ∗∗ CE 59700: Digital Photogrammetric Systems 17 Ayman F. Habib Quaternions & Rotation Matrices • Rotation maintains the angular deviation between two vectors: ∗ ∗ . ̅∗ . ̅ ∗ ∗ ∗ ̅ ̅ . ∗∗ CE 59700: Digital Photogrammetric Systems 18 Ayman F. Habib Quaternions & Rotation Matrices • Rotation maintains the magnitude of a triple product: ,, . • Since: – Quaternion rotation maintains vector magnitude. – Quaternion rotation maintains angular deviation between two vectors. • Then: – Quaternion rotation maintains the magnitude of the triple product. ∗ ∗ ∗ ,, , , CE 59700: Digital Photogrammetric Systems 19 Ayman F. Habib Quaternions & Rotation Matrices • Quaternion/rotation matrix relationship: ∗ ∗ ̅∗ ̅∗ CE 59700: Digital Photogrammetric Systems 20 Ayman F. Habib Quaternions & Rotation Matrices • Quaternion/rotation matrix relationship: ̅∗ 10 00 0 ̅ ∗ 0 0 CE 59700: Digital Photogrammetric Systems 21 Ayman F. Habib Quaternions & Rotation Matrices • Quaternion to Rotation Transformation 2 2 2 2 2 2 2 2 2 2 2 2 & define the same rotation matrix CE 59700: Digital Photogrammetric Systems 22 Ayman F. Habib Quaternions & Rotation Matrices • Rotation to Quaternion Transformation (Option # 1) 3 4 1 / 4 / 4 / 4 / Assumption: 10 CE 59700: Digital Photogrammetric Systems 23 Ayman F. Habib Quaternions & Rotation Matrices • Rotation to Quaternion Transformation (Option # 2) 3 4 1 / 4 / 4 / 4 / Assumption: 10 CE 59700: Digital Photogrammetric Systems 24 Ayman F. Habib Quaternions & Rotation Matrices • Rotation to Quaternion Transformation (Option # 3) 3 4 1 1/4 / 4 / 4 / 4 Assumption: 10 / CE 59700: Digital Photogrammetric Systems 25 Ayman F. Habib Quaternions & Rotation Matrices • Rotation to Quaternion Transformation (Option # 4) 3 4 1 4 1 / 4 / 4 / 4 / Assumption: 10 CE 59700: Digital Photogrammetric Systems 26 Ayman F. Habib Quaternions & Rotation Matrices • Rotation to Quaternion Transformation • Among the options, choose the one that ensures the highest numerical stability. • Option # 1: is the largest among ( ). • Option # 2: is the largest among ( ). • Option # 3: is the largest among ( ). • Option # 4: is the largest among ( ). CE 59700: Digital Photogrammetric Systems 27 Ayman F. Habib Quaternions & Rotation Matrices • The product of two quaternions: ; ; .; ; cos ; • This product is equivalent to rotation angle ( ) around the axis . CE 59700: Digital Photogrammetric Systems 28 Ayman F. Habib Spherical Linear Interpolation • Problem Statement: Given the rotations represented by and , whose angular deviation is , we need to evaluate the interpolated quaternion rotation , whose angular deviations to and are and , respectively. • As per the figure above: CE 59700: Digital Photogrammetric Systems 29 Ayman F. Habib Spherical Linear Interpolation CE 59700: Digital Photogrammetric Systems 30 Ayman F. Habib Spherical Linear Interpolation CE 59700: Digital Photogrammetric Systems 31 Ayman F. Habib Spherical Linear Interpolation . 1 1 CE 59700: Digital Photogrammetric Systems 32 Ayman F. Habib Spherical Linear Interpolation • Spherical Linear Interpolation is useful for: – Interpolation of derived rotation matrices from integrated GNSS/INS attitude – This is the case when deriving the rotation matrices at much higher rate than that derived from GNSS/INS unit (LiDAR & Line Camera systems) – Modeling variation of the rotation matrices as time dependent values for Line Camera Systems CE 59700: Digital Photogrammetric Systems 33 Ayman F. Habib Quaternions & Rotation Matrices • Quaternions characteristics compared to rotation matrices: – It avoids the gimbal lock problem. • Happens whenever the secondary rotation is 90° • Two rotations take place around the same axis in space. – Quaternion multiplication requires fewer operations compared to multiplication of two rotation matrices. – Quaternion-based rotation requires more operations when compared to traditional rotation of vectors. – Quaternions has one constraint while rotation matrices has 6 orthogonality constraints. – Interpolation of quaternion rotations is much more straight forward than 3D rotation matrices. CE 59700: Digital Photogrammetric Systems 34 Ayman F. Habib Gimbal Lock http://en.wikipedia.org/wiki/Gimbal_lock • A set of three gimbals mounted together to allow three degrees of freedom: roll, pitch and yaw. • When two gimbals rotate around the same axis, the system loses one degree of freedom. CE 59700: Digital Photogrammetric Systems 35 Ayman F. Habib Gimbal Lock Z Y X 90° CE 59700: Digital Photogrammetric Systems 36 Ayman F. Habib Gimbal Lock Y X Z 90° CE 59700: Digital Photogrammetric Systems 37 Ayman F. Habib Gimbal Lock Y X Z 90° & . CE 59700: Digital Photogrammetric Systems 38 Ayman F. Habib Gimbal Lock Z X Y X Z Y 90°, 90°, 90° CE 59700: Digital Photogrammetric Systems 39 Ayman F. Habib Gimbal Lock Z Y X 180° CE 59700: Digital Photogrammetric Systems 40 Ayman F. Habib Gimbal Lock X Y Z 90° CE 59700: Digital Photogrammetric Systems 41 Ayman F. Habib Gimbal Lock X Z Y 0° CE 59700: Digital Photogrammetric Systems 42 Ayman F. Habib Gimbal Lock Z X Y X Z Y 90°, 90°, 90° & 180°, 90°, 0° ‼! Singularity in the derivation of the rotation angles CE 59700: Digital Photogrammetric Systems 43 Ayman F. Habib.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    43 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us