Categorification of 1 (And of the Alexander Polynomial)

Categorification of 1 (And of the Alexander Polynomial)

Categorication of 1 (and of the Alexander polynomial) Louis-Hadrien Robert Emmanuel Wagner 6th SwissMAP General Meeting HOMFLY-PT polynomial à ! à ! à ! 1 1 aP a¡ P (q q¡ )P , ¡ Æ ¡ 1 a a¡ P(unknot) 1 or P(unknot) ¡ . Æ Æ q q 1 ¡ ¡ HOMFLY-PT polynomial à ! à ! à ! 1 1 aP a¡ P (q q¡ )P , ¡ Æ ¡ 1 a a¡ P(unknot) 1 or P(unknot) ¡ . Æ Æ q q 1 ¡ ¡ N slN -invariants a q Æ General N: ReshetikhinTuraev sl -invariants (U (sl )), Ï N q N N 2: Jones polynomial, Ï Æ N 1: Trivial invariant P1 (1 on every link), Ï Æ N 0: Alexander polynomial. Ï Æ Jones Khovanov homology Khovanov, '00 $ slN -invariant (N 2) slN -homology KhovanovRozansky '08 ¸ $ HOMFLY-PT Triply graded homology KhovanovRozansky, '06 $ Alexander Knot Floer homology OzsváthSzabó, '04 $ Categorication Philosophy Promote numerical invariants to (graded) vector space valued invariants.  de Rham cohomology de Rahm, '31 $ Categorication Philosophy Promote numerical invariants to (graded) vector space valued invariants.  de Rham cohomology de Rahm, '31 $ Jones Khovanov homology Khovanov, '00 $ slN -invariant (N 2) slN -homology KhovanovRozansky '08 ¸ $ HOMFLY-PT Triply graded homology KhovanovRozansky, '06 $ Alexander Knot Floer homology OzsváthSzabó, '04 $ Categorication Philosophy Promote numerical invariants to (graded) vector space valued invariants.  de Rham cohomology de Rahm, '31 $ Jones Khovanov homology Khovanov, '00 $ slN -invariant (N 2) slN -homology KhovanovRozansky '08 ¸ $ Rasmussen, '15 * HOMFLY-PT Triply graded homology KhovanovRozansky, '06 $ ? DuneldGukovRasmussen, '06 + Alexander Knot Floer homology OzsváthSzabó, '04 $ Today The gl1 link invariant P1 gl1-homology R.Wagner, '18. Ï $ à ! à ! à ! 1 1 qP1 q¡ P1 (q q¡ )P1 ¡ Æ ¡ The Alexander polynomial ¢ gl0-homology R.Wagner, '19. Ï $ à ! à ! à ! 1 ¢ ¢ (q q¡ )¢ ¡ Æ ¡ gl1 invariant Link diagram 1 -lin. comb. of plane graphs Z[q,q¡ ] 1 2 q¡ q¡ ¡ 1 2 qÅ qÅ ¡ plane graph element of 1 N[q,q¡ ] 2 ¡ 1¢#V (¡)/ #V (¡)/2 ¡ q q¡ [2] . Å Æ 4 5 q¡ q¡ ¡ 3 4 5 6 q¡ q¡ q¡ q¡ ¡ ¡ 4 5 q¡ q¡ ¡ 3 3 4 2 5 6 1 q¡ [2] 3q¡ [2] 3q¡ [2] q¡ Æ ¡ Å ¡ gl1 invariant Example 4 5 q¡ q¡ ¡ 4 5 6 q¡ q¡ q¡ ¡ ¡ 4 5 q¡ q¡ ¡ 3 3 4 2 5 6 1 q¡ [2] 3q¡ [2] 3q¡ [2] q¡ Æ ¡ Å ¡ gl1 invariant Example 3 q¡ 3 3 4 2 5 6 1 q¡ [2] 3q¡ [2] 3q¡ [2] q¡ Æ ¡ Å ¡ gl1 invariant Example 4 5 q¡ q¡ ¡ 3 4 5 6 q¡ q¡ q¡ q¡ ¡ ¡ 4 5 q¡ q¡ ¡ gl1 invariant Example 4 5 q¡ q¡ ¡ 3 4 5 6 q¡ q¡ q¡ q¡ ¡ ¡ 4 5 q¡ q¡ ¡ 3 3 4 2 5 6 1 q¡ [2] 3q¡ [2] 3q¡ [2] q¡ Æ ¡ Å ¡ Planar (vinyl) graph graded vector space dimension [2]#V (¡)/2 graded linear map gl1-homology Braid closure diagram hypercube of plane graphs graphs (with shifts) { 2} { 1} { 2} Å ¡! ¡ ¡ { 2} { 1} Å Å gl1-homology Braid closure diagram hypercube of plane graphs graphs (with shifts) { 2} { 1} { 2} Å ¡! ¡ ¡ { 2} { 1} Å Å Planar (vinyl) graph graded vector space dimension [2]#V (¡)/2 graded linear map 3 3 4 2 5 6 q¡ [2] 3q¡ [2] 3q¡ [2] q¡ ¡ Å ¡ gl1-homology Example { 4} { 5} ¡ ¡ { 3} { 4} { 5} { 6} ¡ ¡ ¡ ¡ { 4} { 5} ¡ ¡ gl1-homology Example { 4} { 5} ¡ ¡ { 3} { 4} { 5} { 6} ¡ ¡ ¡ ¡ { 4} { 5} ¡ ¡ 3 3 4 2 5 6 q¡ [2] 3q¡ [2] 3q¡ [2] q¡ ¡ Å ¡ k Y #{ in Ci } Xi i 1 ¿(d,c) ÆY Æ (Xi Xj ) ¡ Ci Cj Dot conguration d . M D(¡) Q. Æ d Multiplication ¹ on D(¡). Coloring c (C1,C2,..., Ck ) F Æ ¡ i Ci . Æ Vinyl graph vector space Vinyl graph ¡ index k. k Y #{ in Ci } Xi i 1 ¿(d,c) ÆY Æ (Xi Xj ) ¡ Ci Cj M D(¡) Q. Æ d Multiplication ¹ on D(¡). Coloring c (C1,C2,..., Ck ) F Æ ¡ i Ci . Æ Vinyl graph vector space Vinyl graph ¡ index k. Dot conguration d . k Y #{ in Ci } Xi i 1 ¿(d,c) ÆY Æ (Xi Xj ) ¡ Ci Cj Multiplication ¹ on D(¡). Coloring c (C1,C2,..., Ck ) F Æ ¡ i Ci . Æ Vinyl graph vector space Vinyl graph ¡ index k. Dot conguration d . M D(¡) Q. Æ d k Y #{ in Ci } Xi i 1 ¿(d,c) ÆY Æ (Xi Xj ) ¡ Ci Cj Coloring c (C1,C2,..., Ck ) F Æ ¡ i Ci . Æ Vinyl graph vector space Vinyl graph ¡ index k. Dot conguration d . M D(¡) Q. Æ d Multiplication ¹ on D(¡). k Y #{ in Ci } Xi i 1 ¿(d,c) ÆY Æ (Xi Xj ) ¡ Ci Cj Vinyl graph vector space Vinyl graph ¡ index k. Dot conguration d . M D(¡) Q. Æ d Multiplication ¹ on D(¡). Coloring c (C1,C2,..., Ck ) F Æ ¡ i Ci . Æ Vinyl graph vector space Vinyl graph ¡ index k. Dot conguration d . M D(¡) Q. Æ d Multiplication ¹ on D(¡). Coloring c (C1,C2,..., Ck ) F Æ ¡ i Ci . Æ k Y #{ in Ci } Xi 2 2 2 i 1 X1 X2 X3X4 ¿(d,c) ÆY 3 2 Æ (Xi Xj ) Æ (X1 X2) (X3 X4) (X1 X4)(X2 X3) ¡ ¡ ¡ ¡ ¡ Ci Cj Vinyl graph vector space Vinyl graph ¡ index k. Dot conguration d . M D(¡) Q. Æ d Multiplication ¹ on D(¡). Coloring c (C1,C2,..., Ck ) F Æ ¡ i Ci . Æ k Y #{ in Ci } Xi 2 2 2 i 1 X1 X2 X3X4 ¿(d,c) ÆY 3 ¡ 2 Æ (Xi Xj ) Æ (X1 X2) (X3 X4) (X1 X4)(X2 X3) ¡ ¡ ¡ ¡ ¡ Ci Cj Vinyl graph vector space Vinyl graph ¡ index k. Dot conguration d . M D(¡) Q. Æ d Multiplication ¹ on D(¡). Coloring c (C1,C2,..., Ck ) F Æ ¡ i Ci . Æ k Y #{ in Ci } Xi 2 2 2 i 1 X X1 X2 X3X4 ¿(d,c) ÆY ¿(d) ¿(d,c) 3 2 Æ (Xi Xj ) Æ c col(¡) Æ (X1 X2) (X3 X4) (X1 X4)(X2 X3) ¡ 2 ¡ ¡ ¡ ¡ Ci Cj Vinyl graph vector space Proposition (R.Wagner, '17 ) S For any dot conguration d, ¿(d) Q[X1,...,Xk ] k . 2 S1(¡) D(¡)/ker(¿ ¹( , )X 0). Æ ± ²7! Theorem (R.Wagner, '18 ) #V (¡)/2 For any vinyl graph ¡, dimq S1(¡) [2] . Æ Theorem (R.Wagner '18) 1. These maps in the attening of the hypercube produces a chain complex. Its homology, denoted is a link invariant Hgl1 which categories P1. 2. There is a spectral sequence from the triply graded homology to . Hgl1 linear maps ³ ´ ³ ´ ³ ´ ³ ´ : S1 S1 : S1 S1 ! ! 7! 7! ¡ linear maps ³ ´ ³ ´ ³ ´ ³ ´ : S1 S1 : S1 S1 ! ! 7! 7! ¡ Theorem (R.Wagner '18) 1. These maps in the attening of the hypercube produces a chain complex. Its homology, denoted is a link invariant Hgl1 which categories P1. 2. There is a spectral sequence from the triply graded homology to . Hgl1 Do I have time? Examples 4 2 1. Trefoil: the Poincaré polynomial is 1 q¡ (t t ). Å Å 2. Hopf link: the Poincaré polynomial is 1 q2(1 t). Å Å Examples 4 2 1. Trefoil: the Poincaré polynomial is 1 q¡ (t t ). Å Å 2. Hopf link: the Poincaré polynomial is 1 q2(1 t). Å Å Do I have time? Alexander polynomial Marked ( ) braid closure 1 -lin. comb. of marked plane graphs ? Z[q,q¡ ] 1 q¡ ¡ 1 qÅ ¡ Marked plane graph element of 1 N[q,q¡ ] ¡ complicated (comes from Uq(gl(1 1)) mod). j ¡ 2 2 2 1 2 q 1 q¡ [2] 3q¡ [2] 3q¡ 0 ¡ Å Æ ¡ Å Alexander polynomial Example 1 2 q¡ q¡ ¡ ? ? 1 2 3 q¡ q¡ q¡ ¡ ¡ ? ? ? ? ? 1 2 q¡ q¡ ¡ ? ? Alexander polynomial Example 1 2 q¡ q¡ ¡ ? ? 1 2 3 q¡ q¡ q¡ ¡ ¡ ? ? ? ? ? 1 2 q¡ q¡ ¡ ? ? 2 2 2 1 2 q 1 q¡ [2] 3q¡ [2] 3q¡ 0 ¡ Å Æ ¡ Å S00(¡ ) S1(¡) at least k 1 at ? { k 1} ? ⊆ Æ h ¡ i ¡ Å induced by S1. Theorem (R.Wagner, '19) For any right-marked vinyl graph ¡?, dimq S00(¡?) is the expected graded dimension. gl0-homology Same hypercube with a dierent functor. Theorem (R.Wagner, '19) For any right-marked vinyl graph ¡?, dimq S00(¡?) is the expected graded dimension. gl0-homology Same hypercube with a dierent functor. S00(¡ ) S1(¡) at least k 1 at ? { k 1} ? ⊆ Æ h ¡ i ¡ Å induced by S1. gl0-homology Same hypercube with a dierent functor. S00(¡ ) S1(¡) at least k 1 at ? { k 1} ? ⊆ Æ h ¡ i ¡ Å induced by S1. Theorem (R.Wagner, '19) For any right-marked vinyl graph ¡?, dimq S00(¡?) is the expected graded dimension. Theorem (R.Wagner '19) 1. The attening of the hypercube with S00 produces a chain complex. Its homology, denoted is a knot invariant which Hgl0 categories the Alexander polynomial. 2. There is a spectral sequence from the reduced triply graded homology to . Hgl0 Thank you !!.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    37 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us