Influence of Surface Flatness on Bolted Flanges Strength and Fatigue Strength Limit ANDERS SÖDERLUND

Influence of Surface Flatness on Bolted Flanges Strength and Fatigue Strength Limit ANDERS SÖDERLUND

Influence of Surface Flatness on Bolted Flanges Bolt Section Method and Fatigue Strength Limit Ytflathetens Påverkan på Flänsförband Bolt Section Method och Utmattningshållfasthet Anders Söderlund Faculty of Health, Science and Technology Degree Project for Master of Science in Engineering, Mechanical Engineering 30 HP/ Credit points Supervisor: Henrik Jackman Examiner: Jens Bergström 2017-06-20 35106172 Influence of Surface Flatness on Bolted Flanges Strength and Fatigue Strength Limit ANDERS SÖDERLUND © ANDERS SÖDERLUND, 2017 Supervisors: Lennart Ekvall & Per Widström, GKN Aerospace Sweden AB Engine Systems Supervisor: Henrik Jackman, Karlstad University Master’s Thesis 2017 Faculty of Health, Science and Technology Division of Mechanical Engineering Karlstad University SE-65188 Karlstad Telephone +46 54 700 1000 Abstract GKN Aerospace is one of the few main suppliers of engine components in the world, continuously cultivating engineering and design methods. An important factor in this are the components ability to withstand fatigue and to provide designs to improve fatigue strength limit. A design element that occurs in many components construction is the bolted joint, particularly for circular casings. The conditions for these are also susceptible to fatigue failure. This report focusses of the surface flatness of bolted joints used in flanges and with the help of CAE-programs find the best way of modeling the specific problem. The threads in the bolt and nut are complicated to model accurately. Therefore, some alternative solutions were evaluated and verified as acceptable. When a proper way to model the thread was found, this study was focused on investigate the influence of a deviating surfaces on flanges where bolted joints are applied. Finally, influence on fatigue strength of the bolted joint was studied for flange surface deviating from nominal. The Bolt Section Method that creates a 2-dimensional contact surface between the bolt and nut is found to display behavior that resembles that of thread contact. Results on stiffness, contact and displacement correlate well to the model where 3-dimensional threads were modelled (True Thread Modeling). It also lower the computational time significantly and a viable option for Finite Element Analysis on bolted joints. The surface deviation on the flange results in lower fatigue strength. A surface deviation also causes plasticity to occur in both bolt and nut by simply pre-loading the joint, when part of the pretension is used to close the gap. The direction of the surface deviation will influence as well. When the gap is located at the inner diameter we found the lowest fatigue life. To detail the flatness requirement, it is required also to account for the effect from prying bolt, pretension ratio and friction coefficient. The conclusion from this master thesis was that the modeling of threads can be simplified by implementing the Bolt Section Method. The influence on fatigue was described by a general model and flatness requirements can be established accordingly. Abstrakt GKN Aerospace är en av de mest framstående leverantörerna av motorkomponenter i världen och kontinuerligt drivande i ingenjörskap och design. En viktig faktor i detta är en komponents förmåga att motstå utmattningsbrott och designa för att förbättra utmattningshållfastheten. En komponent som förekommer i de flesta konstruktioner är skruvförband och dessa då ofta mottagliga för utmattningsbrott. I rapporten analyseras flänsförband med hjälp av finita elementmetoden och mjukvaruprogram för att nå de bästa resultaten från det specifika problemet. Gängorna i bult och mutter är svårmodellerade och kommer med flertalet ogynnsamma aspekter likt tidskonsumering och elementstorlek som krävs. I rapporten undersöks hur gängkontakt är implementerat på bästa sätt. När den optimala modelleringen funnits utfördes en analys av ytflathetens påverkan på ett skruvförband och slutligen en undersökning hur detta påverkar utmattningshållfastheten på komponenten. Den undersöka kontaktmetoden för att implementera det mekaniska beteendet av gängor (Bolt Section Method) konstruerar en tvådimensionell kontaktyta mellan bult och mutter. Resultaten från denna metod korrelerar väl med modellerade tredimensionella gängor beträffande styvhet, kontakter och förskjutning. Den erbjuder också omfattande sänkning i beräkningstid eftersom modellen kräver betydligt färre element för att nå konvergens. En lutande yta på flänsar resulterar i sänkt utmattningshållfasthet och plasticering redan under förlastning av skruvförbandet. Det noterades också hur riktningen på lutningen influerar på olika sätt, att ett orsakat gap vid livet sänker utmattningshållfastheten ytterligare i jämförelse med ett gap i änden av flänsen. Preface This report is the result of a master thesis conducted at the master degree program in material science, Karlstad University. The thesis was supervised and accomplished in collaboration with GKN Aerospace AB in Trollhättan, Sweden during the spring of 2017. Extended gratitude to the supervisors from GKN Aerospace AB, Per Widström and Lennart Ekvall. Without their invaluable guidance, this thesis would never have been completed. Further thanks to the supervisor from Karlstad University, Henrik Jackman. Nomenclature Abbreviations FE Finite Element FEA Finite Element Analysis BSM Bolt Section Method MPC Multiple Point Constraints TTM True Thread Modeling GAS GKN Aerospace AB CAD Computer Aided Design FSL Fatigue Strength Limit CPU Central Processing Unit Contents 1. Introduction ............................................................................................................................................... 1 1.1 GKN Aerospace AB ........................................................................................................................ 1 1.2 Problem statement .......................................................................................................................... 2 1.3 Purpose ............................................................................................................................................... 2 1.4 Aim ....................................................................................................................................................... 3 1.5 Computer-Aided Engineering (CAE) ....................................................................................... 3 1.6 Background ....................................................................................................................................... 4 1.6.1 Bolt .............................................................................................................................................. 4 1.6.2 Bolt Design ............................................................................................................................... 7 1.6.3 Nut ............................................................................................................................................... 7 1.6.4 Bolted Joints ............................................................................................................................. 8 2. Theory ......................................................................................................................................................... 9 2.1 Analytical calculation ..................................................................................................................... 9 2.1.1 Pre-tension................................................................................................................................ 9 2.1.2 Tensile load ............................................................................................................................ 12 2.1.3 Bending Moment .................................................................................................................. 13 2.1.4 Fatigue ..................................................................................................................................... 14 3. Finite Element Theory ......................................................................................................................... 17 3.1 Contacts ....................................................................................................................................... 17 3.2 Theory: Bolt Section method ................................................................................................ 19 3.3 APDL ............................................................................................................................................ 20 3.4 Mesh .............................................................................................................................................. 20 3.5 Material ........................................................................................................................................ 22 3.6 Element type............................................................................................................................... 24 3.7 Loads and Boundary Conditions .......................................................................................... 25 4. Finite Element Analysis ....................................................................................................................... 26 4.1 Contact Evaluation ....................................................................................................................... 26 4.2 Method

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    92 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us