Trinuclear Clusters of Early Transition Metals: Jahn-Teller Distortions and Electronic Structuret

Trinuclear Clusters of Early Transition Metals: Jahn-Teller Distortions and Electronic Structuret

Organometallics 1985, 4, 27-34 27 possibility involving no hydride permutation gave a slightly mapping an initial atomic configuration into a final one. better fit to the data and was, therefore, marginally pre- The first step is to assure maximum coincidence of the ferred. (labeled) atoms in the initial and final arrangements. This The physical mechanisms that correspond to the ex- is accomplished by requiring that the mass-weighted re- perimentally established permutations considered were sidual be at a minimum examined by employing a quasi-least-motion simulation. We have concluded that the most probable mechanism m’[R’(final) - Ri(initial)12 involves a simultaneous exchange of the two axial phos- where the Ri’s are particle position vectors. It is generally phorus ligands with two of the equatorial phosphorus convenient to operate in a center-of-mass coordinate sys- ligands. The hydride ligands simply move to the new tem, though with simple coordination complexes it may equatorial edges. In the (distorted) distal pentagonal- be acceptable to place the origin at the central atom. The bipyramidal structure that is favored as the equilibrium second step involves motion along some pathway leading geometry, this corresponds to permutation of the CrP5 from the initial to the final configuration. Least-motion framework via a “Berry pseudorotation” type process. pathways defined in Cartesian coordinates are generally Line-shape analysis in a seven-spin system is a complex unsuitable, giving physically unreasonable intermediate problem; the NMR line-shape study of CrH,[P(OCH,),], structures. Quasi-least-motion pathways may be mapped, described in this paper involves an analysis of the most either in spherical polar coordinates (suitable for simple complex spin system yet treated in detail and further il- coordination complexes) or in internal coordinates (the lustrates the power of a systematic analysis of the basic most general case). While these pathways will not in permutations to clarify and eliminate mechanistic possi- general correspond to the lowest energy route from starting bilities. material to products, they should represent qualitative Acknowledgment. We wish to acknowledge the fine approximations of the actual pathways. technical assistance of M. A. Cushing, Jr., G. Watunya, and We have used the spherical polar model for the rear- F. N. Schock. rangement mechanisms for the distal isomer of CrH,[P- (OCH,),],. The trimethyl phosphite ligands were replaced Appendix by points of equal mass displaced outward along the Cr-P In order to facilitate the visualization of dynamical bond direction to the center-of-mass for the phosphite processes such as mutual exchange in coordination com- group. plexes, electrocyclic reactions, and intramolecular Diels- Registry No. Cr [ P (OMe)3] sH2, 92842-95-0; Cr [P (OMe)&, Alder reactions, we have developed a methodology for 70948-62-8. Trinuclear Clusters of Early Transition Metals: Jahn-Teller Distortions and Electronic Structuret Yuansheng Jiang” (Yuan-sun Kiang) and Aoqing Tang Insthte of Theoretlcal Chemistry, Jilin Unlversity, Changchun, Peoples Republic of China Roald Hoffmann’ Department of Chemistry, Cornel1 University, Ithaca, New York 14853 Jinling Huang” and Jiaxi Lu Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou, Peoples Republic of China Received April 18, 1984 A detailed theoretical study of a trinuclear eight-electron cluster with a distorted metal core, MO~S~C$~-, leads to some general conclusions about the role of different capping, bridging, and terminal ligands in determining the electronic and geometrical structure of trinuclear clusters of the early transition metals. The early transition-metal cluster compounds are dis- characteri~ed.~-~~At the same time, theoretical investi- tinguished from similar clusters involving 8B elements by gations were also devel~ping.~-~~ the typically high oxidation state of the metal component and by halogens or other electronegative atoms as ligands. A variety of oxidation states or electron counts exists. (1) Muller, A.; Jostes, R.; Cotton, F. A. Angew. Chem.,Int. Ed. Engl. 1980, 19, 875. During the past few years, much research has been carried (2) Cotton, F. A.; Mague, J. T. Znorg. Chem. 1965, 3, 1402. out on and much attention has been paid to the trinuclear (3) Goldberg, S. Z.; Spinack, B.; Stanley, G.; Eisenberg, R.; Braitach, metal cluster systems, one of the representative species of D. M.; Muller, J. S.; Abkowitz, M. J. Am. Chem. SOC.1977, 99, 110. (4) King, R. B.; Braitsch, D. M.; Kapoor, P. N. J. Am. Chem. SOC. experimental and theoretical imp0rtance.l Dozens of 1976. 97. 60. complexes of this type have been prepared and structurally (5j Fisher, E. 0.;Rohrscheid, F. J. Organomet. Chem. 1966, 6, 53. (6) Churchill, M. R.; Chang, S. W. Y. J. Chem. SOC.,Chem. Commun. 1974, 248. +Dedicated to the memory of our friend and colleague Earl (7) Muller, A.; Ruck, A.; Dartmann, M.; Reinsch-Vogell, U. Angew. Muetterties. Chem., Int. Ed. Engl. 1981,20, 483. 0276-7333/85/ 2304-0027$01.50f 0 0 1985 American Chemical Society 28 Organometallics, Vol. 4, No. 1, 1985 Jiang et al. Table I. Some Trinuclear Clusters and Their Selected Properties electron compound tYPe count M-M, A ref 12 2.489 2 '6 '6 7 3 '6 '6 8 475 U6 8 3.334 4-6 '6 '6 8 3.335 495 M3 6 2.502 7 M3 6 2.812 8 M3 6 2.766 9 M3 6 2.486 10 M3 6 2.47 11 M3 6 2.77 12 M3 6 2.514 13 M3 6 2.609 14 M3 6 2.589 15 M3 6 2.78 16 M3 6 2.524 17 M3 7 2.578 18 M3 7 19 M3 7 2.81 20 M3 7 2.88 21 M3 7 3 .OO 21 M3 8 2.550 22 M, 8 2.579, 2.585, 2.561 23 M3 8 2.58 18 M6 6 3.307 24 M6 7 3.357 24 M6 8 2.701, 2.715 25 M6 9 3.214 26 M6 10 3.336 27 M6 10 3.356 27 M6 12 3.21 28 M6 13 29 M6 13 3.363 30 M6 15 3.29 31 IMo,S,CI, 1' B3 8 2.556, 2.641, 2.653 32 B6 4 2.842 33 B6 4 2.53 34 B6 4 2.875, 2.892 35 B6 4 2.883-2.891 36 B6 5 2.815, 2.801, 2.820 36 B6 6 2.766 37,38 B6 6 2.752 37 B6 6 2.796, 2.773 39 B6 6 2.152 40 B6 6 2.747 41,42 6 2.145 41,42 6 2.769 41 6 2.76 41 6 2.76. 2.81 43 Muller, Jostes, and Cotton1 have reviewed in a system- They classified these compounds into three categories atic way the main achievements in this field prior to 1980. according to the number of capping ligands (p3-type) in- (8) Vergarmini, P. J.; Vahrenkamp, H.; Dahl, L. F. J. Am. Chem. SOC. (20) Schnering, H.-G.; Wahrle, H.; Schgfer, H. cited in: SchAfer, H.; 1971,93,6327. Schnering, H.-G. Angew. Chem. 1969, 76, 833. (9) Miiller, A.; Reinsch, U. Angew. Chem., Int. Ed. Engl. 1980,19,72. (21) Simon, A.; Schnering, H.-G. von J. Less-Common Met. 1966,11, (IO) Bino, A.; Cotton, F. A.; Don, 2. J. Am. Chem. SOC.1978,100,5252; 31. 1979. 102. 8842. (22) Bino, A.; Cotton, F. A.; Dori, 2. Inorg. Chim. Acta 1979,33, L133. (11) Scanicar, S.; Herceg, M. Acta Crystallogr. 1966,21, A151. (23) Huang, J.; Shang, M.; Huang, J.; Zhang, H.; Lu, S.; Lu, J. J. (12) Mtlller, A.; Pohl, S.; Dartmann, M.; Cohen, J. P.; Bennett, J. M.; Struct. Chem. (Engl. Transl.) 1982,1, 1. Kirchner, R. M. 2. Naturforsch.,B Anorg. Chem., Org. Chem. 1979, B34, (24) Cotton, F. A,; Lewis, G. E.; Mott, G. N. Inorg. Chem. 1982,21, 434. 3316. (13) Mattes, R.; Mennemann, K. 2.Anorg. Allg. Chem. 1977,437,175. (25) Ardon, M.; Cotton, F. A,; Dori, Z.; Fang, A.; Kapon, M.; Reisner, (14) Sharp, P. R.; Schrock, R. R. J. Am. Chem. SOC.1980,102,1430. G. M.; Shaia, M. J. Am. Chem. SOC.1982,104, 5394. Cotton, F. A.; Felthouse, T. R.; Lay, D. G. J. Am. Chem. SOC.1980,102, (26) Chang, S. C.; Jeffrey, G. A. Acta Crystallogr., Sect. B. 1970, B26, 1431. 673. (15) Shibahara, T.; Hattori, M.; Kuroya, M. J. Am. Chem. SOC.1984, (27) Cotton, F. A.; Wang, W. Inorg. Chem. 1982,21, 2675. 106,2710. (28) Hessel, L. W.; Romers, C. Red. Trau. Chim. Pays-Bas 1669,88, (16) Halbert, T. R.; McGavley, K.; Pan, W.-H.; Czernuszewicz, R. S.; 545. Stiefel, E. I. J. Am. Chem. SOC.1984, 106, 1849. (29) Baikie, A. R. E.; Hursthouse, M. B.; New, D. B.; Thornton, P. J. (17) (a) McCarroll, W. H.; Katz, L.; Ward, R. J. Am. Chm. SOC.1951, Chem. SOC.,Chem. Commun., 1978,62. 79, 5410. (b) Ansell, G. B.; Katz, L. Acta Crystallogr. 1966, 21, 482. (30) Baikie, A. R. E.; Hursthouse, M. B.; New, D. B.; Thornton, P.; (181 Torardi. C. C.: McCarlev. R. E. Inorg. Chem. 1984. 23. oo00. White, R. G. J. Chem. SOC.,Chem. Commun., 1980,684. (19) Beck, W.; Danzer, W.; yhiel, G. Anggw. Chem., Int.'Ed: Engl. (31) Anzenhofer, K.; de Boer, J. J. Red. Trav. Chim. Pays-Bas 1969, 1973, 12, 582. 88, 286. Trinuclear Clusters of Early Transition Metals Organometallics, Vol. 4, No. 1, 1985 29 Scheme I tion is paid to drawing out the stereochemistry of the p2 ligands in detail, nor are the p1 or terminal ligands drawn in. We have tentatively skirted the nontrivial issue of whether a bidentate polyatomic ligand that bridges two metals, e.g., acetate or sulfate, is really p2 or two p1ligands (1).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us