Section 8 Inverse Trigonometric Functions

Section 8 Inverse Trigonometric Functions

Section 8 Inverse Trigonometric Functions Inverse Sine Function Recall that for every function y = f (x) , one may de…ne its INVERSE 1 FUNCTION y = f ¡ (x) as the unique solution of x = f (y) . 1 In other words, the inverse function y = f ¡ (x) "undo" the function y = f (x) : 1 1 f f ¡ (x) = x, f ¡ (f (x)) = x. We also know that eve¡n if a fu¢nction y = f (x) is de…ned every, its inverse 1 function y = f ¡ (x) may not be de…ned everywhere. The su¢cient condi- tion that guarantees existence of inverse functions is called "horizontal line test": a horizontal line can intersect the graph of y = f (x) at most once. For trigonometric functions, for instance the graph of y = sin x intersects horizontal y = 0.6 in…nite many times: Therefore, to de…ne inverse function of y = sin x, we consider the restricted sine function 1 ¼ ¼ i.e., the restriction of y = sin x on , . This function has the domain 2 2 ¼ ¼ ¡ , and the range [ 1, 1] ; it cahptures aill information of the sine function ¡ 2 2 ¡ hover all ireal numbers. Notice that the only di¤erence between the restricted Sine function and the (unrestricted) Sine function is their domains: ¼ ¼ restricted y = sin x de…ned only for x on , ¡ 2 2 y = sin x de…ned for all real numhbers xi ¼ ¼ De…nition: The restricted Sine function de…ned on , is invert- ¡ 2 2 ible, and its inverse function is denoted as h i 1 y = sin¡ x or y = arcsin x. ¼ ¼ The domain of y = arcsin x is [ 1, 1] , and the range y = arcsin x is , . ¡ ¡ 2 2 The graph of y = arcsin x is the re‡ection of the graph for the restrhicted Sinie function about y = x : Example 1 Find the following inverse Sine function values: (a) arcsin 1 (b) arcsin p3 2 ¡ 2 ¡ ¢ ³ ´ 2 1 Solution: (a) By the general de…nition of inverse functions, y = arcsin 2 is the solution of the restricted Sine function for y : ¡ ¢ 1 = sin y 2 The words "restricted Sine" means that ¼ ¼ y . ¡ 2 · · 2 Therefore ¼ 1 ¼ y = , or arcsin = 6 2 6 µ ¶ (Notice that the notation "arcsin" comes from the fact that the length of the arc whose sine is 1/2 is ¼/6.) (b) Similarly, we need to solve p3 = sin y ¡ 2 for ¼ ¼ y . ¡ 2 · · 2 The solution is ¼ p3 ¼ y = , or arcsin = ¡ 3 á 2 ! ¡ 3 Recall that by the de…nition of inverse function, 1 1 f f ¡ (x) = x for x in D f ¡ 1 f¡ (f (x)¢) = x for x in D ¡(f) ¢ Therefore, sin (arcsin x) = x for x in [ 1, 1] ¡ ¼ ¼ arcsin (sin x) = x for x in , ¡ 2 2 h i Example 2 Find following values: 3 ¼ ¼ (a) arcsin sin = sin 1 sin = 4 ¡ 4 ³ ³ 3´¼´ ³ ³ ´´3¼ (b) arcsin sin = sin 1 sin = 4 ¡ 4 µ µ7¼ ¶¶ µ µ7¼ ¶¶ (c) arcsin sin = sin 1 sin = 6 ¡ 6 µ µ ¶¶ µ µ ¶¶ ¼ Solution: (a) According to the formula above, since x = is in ¼ , ¼ 4 ¡ 2 2 ¼ ¼ £ ¤ arcsin sin = 4 4 ³ ³ ´´ 3¼ (b) This time, since x = is not in ¼ , ¼ , the above formula that 4 ¡ 2 2 would have lead to £ ¤ 3¼ 3¼ arcsin sin = doesn’t apply. 4 4 µ µ ¶¶ We thus solve this problem, we need to …nd an angle x in ¼ , ¼ such that ¡ 2 2 3¼ £ ¤ sin x = sin . 4 µ ¶ This can be easily done as follows: 3¼ ¼ ¼ sin = sin ¼ = sin . 4 ¡ 4 4 µ ¶ ³ ´ Thus 3¼ ¼ ¼ arcsin sin = arcsin sin = . 4 4 4 µ µ ¶¶ 7¼ ³ ³ ´´ (c) This time again is outside of the domain of the restricted sine 6 function ¼ , ¼ . according to the method in (b), ¡ 2 2 £ ¤ 7¼ ¼ ¼ ¼ sin = sin ¼ + = sin = sin . 6 6 ¡ 6 ¡ 6 µ ¶ ³ ´ ³ ´ ¼ Now since is in ¼ , ¼ , ¡ 6 ¡ 2 2 £ 7¤¼ ¼ ¼ arcsin sin = arcsin sin = . 6 ¡ 6 ¡ 6 µ µ ¶¶ ³ ³ ´´ 4 Example 3 Find the following values 2 2 (a) sin arcsin = sin sin 1 = 3 ¡ 3 µ µ ¶¶ 1µ µ ¶¶ (b) sin (arcsin 2) = sin sin¡ (2) = 2 Solution: (a) Obviousl¡y, x = i¢s in the domain of arcsin x, [ 1, 1] . 3 ¡ 2 2 sin arcsin = 3 3 µ µ ¶¶ (b) x = 2 is not in the [ 1, 1] , arcsin 2 is unde…ned. So sin (arcsin 2) is not de…ned. ¡ 1 1 Example 4 (a) What is cos sin¡ x ? (b) What is sin 2 sin¡ x ? ¡1 ¢ ¡ ¢ Solution: (a) Set µ = sin¡ x which is de…ned for any 1 x 1. This means ¡ · · ¼ ¼ sin µ = x and µ ¡ 2 · · 2 Thus cos µ 0, and ¸ cos µ = 1 sin2 µ = p1 x2. ¡ ¡ (b) p sin 2µ = 2 sin µ cos µ = 2xp1 x2 ¡ Inverse Cosine function For y = cos x 5 we de…ne the restricted Cosine function as y = cos x for x in [0, ¼] so that its graph is the piece in [0, ¼] Apparently, the restricted Cosine function passes the horizontal line test and thus is invertible. We call the inverse function of the restricted Cosine function inverse Cosine and is denoted by 1 y = cos¡ x or y = arccos x. Analogous to the inverse sine function, there are some basic facts for y = 1 cos¡ x : 1 y = cos¡ x has domain [ 1, 1] and range [0, ¼] ¡ 6 1 cos cos¡ x = x for x in [ 1, 1] 1 ¡ cos¡ (cos x¢) = x for x in [0, ¼] Example 5 Find the values: 1 1 1 (a) cos¡ (0) , (b) cos¡ ¡2 1 µ ¶ Solution: (a) µ = cos¡ (0) is the angle in [0, ¼] satisfying ¼ cos µ = 0 = µ = ) 2 1 1 (b) µ = cos¡ is the solution of ¡2 µ ¶ 1 cos µ = , µ in [0, ¼] ¡2 ¼ 1 Since cos = , 3 2 2¼ ¼ ¼ 1 cos = cos ¼ = cos = . 3 ¡ 3 ¡ 3 ¡2 ³ ´ So 1 1 2¼ µ = cos¡ = ¡2 3 µ ¶ Example 6 compute 2 (a) cos cos 1 , (b) arccos (cos 4) ¡ 3 µ ¶ 2 Solution: (a) Since x = is in the domain of arccos x, 3 2 2 cos cos 1 = ¡ 3 3 µ ¶ (b) Note that x = 4 > ¼ 3.14, which is beyond the domain of the restricted cosine. So the formul'a arccos (cos x) = x doesn’t apply. 7 we need to …nd an angle µ in [0, ¼] such that cos µ = cos 4. To this end cos 4 = cos (2¼ 4) , µ = 2¼ 4 is in [0, ¼] ¡ ¡ and arccos (cos 4) = arccos (cos µ) = µ = 2¼ 4 ¡ 1 1 1 Example 7 (a) What is sin (cos¡ x)?(b) What is sin¡ x + cos¡ x? 1 Solution: (a) Set µ = cos¡ x so µ is in [0, ¼] where sin µ > 0. Thus 1 2 sin cos¡ x = sin µ = p1 cos µ ¡ = p1 x2. ¡ ¢ ¡ 1 (b) Set ® = sin¡ x. Then x = sin ®. Draw a right triangle whose one angle is ®, hypotenuse = 1, and the opposite side is a = x. Then this side x ¼ is adjacent to the third angle in the triangle, i.e., ¯ = ®, and cos ¯ = x/1, 2 ¡ 1 or ¯ = cos¡ x. We conclude ¼ sin 1 x + cos 1 x = ®+ ¯ = ¡ ¡ 2 Inverse function for Tangent Function Since the graph of y = tan x is and the period is ¼. So one entire period 8 passes the horizontal test and thus invertible. The inverse function of this ¼ ¼ restricted piece in , is denoted as ¡ 2 2 ³ ´ 1 y = tan¡ x or y = arctan x. Some basic facts: 1 ¼ ¼ y = tan¡ x has the domain ( , ) and range , ¡1 1 ¡ 2 2 ³ ´ 1 ¼ ¼ tan¡ (tan x) = x only for x in , ¡ 2 2 1 tan tan¡ x = x for all x. ³ ´ ¡ 1 ¢ 1 Example 8 Find (a) tan¡ ( 1) , (b) tan tan¡ p5 ¡ ¡ ¢ 9 ¼ 1 ¼ Solution: (a) Since tan = 1, tan¡ ( 1) = ¡ 4 ¡ ¡ ¡ 4 1 (b) tan tan¡ p5 = p³5 ´ Example 9¡ (a) Give¢n tan µ = x/2, 0 < µ < ¼/2. Express tan 2µ as a func- tion of x. 1 (b) Simplify sec (tan¡ x) Solution: (a) Using double-angle formula, x 2 tan µ 2 4x tan 2µ = = 2 = 1 tan2 µ ³ x´ 2 4 x2 ¡ 1 ¡ ¡ 2 ³ ´ 1 (b) Set µ = tan¡ x. x = tan µ. 1 2 2 sec tan¡ x = sec x = 1 + tan µ = p1 + x ¡ ¢ p Homework: In Exercise 1-10, evaluate each of the quantities that is de…ned. If a quantity is unde…ned, explain it. 1 p3 1. sin¡ = à 2 ! 1 2. cos¡ ( 1) = ¡ 1 3. tan¡ p3 = 1 5 4. sin sin¡ = ¡4 µ µ ¶¶ 4¼ 5. cos 1 cos = ¡ 5 µ µ ¶¶ 1 ¼ 6. tan¡ tan = ¡ 5 ³ ³ ´´ 4¼ 7. sin 1 sin = ¡ 3 µ ¶ 10 3 8. cos cos 1 = ¡ 7 µ µ ¶¶ 3¼ 9. sin sin 1 = ¡ 2 µ µ ¶¶ 1 10. cos (cos¡ 2) = In Exercise 11-15, …nd and simplify the exact value of each quantity. 4 11. tan sin 1 ¡ 5 µ µ ¶¶ 4 12. cos arcsin 9 µ µ ¶¶ 1 13. sin (tan¡ 2) 1 14. sin cos 1 ¡ 4 µ µ ¶¶ 4 15. cos tan 1 ¡ 3 µ ¶ Simplify the following expressions. 1 16. tan (cos¡ x) 1 17. sin (tan¡ x) 1 1 18. cos sin¡ x + cos¡ x ¡ ¢ 11.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us