Fate of 137Cs and other radionuclides in rivers and lakes Prof. Jim Smith University of Portsmouth …. and many collaborators ! From Astrophysics to Ecology Mechanistic model of the Solar System Radioactive pollution of lakes Aquatic food webs Cs co nce ntra tion in pla nts Bi oup take pl ants Ex cre tion pla nts Age o f pla nt Bi oma gni fica tion fac tor for plan ts Epi te mp Fi sh weig ht Cs co nce ntra tion in fish Bi olog ica l ha lflif e Bi oup take de lay fac tor St ead y st ate K con cen trat ion Bi oup take fis h Fi sh weig ht Ex cre tion fis h K mod bi oav ail c on c Aut pr od m od era tor Susp mat ter Disso lved co nc Bi oma gni fica tion fac tor Al l pro d m od erat or ha bita t To talP Fa cto r for se dim ents Partic ulat e p has e Di sso lved fra ctio n Bi oma gni fica tion fac tor Decay rat e fo r Cs Outflo w ar eas Cs in ET La ke Kd Cs in A Volum e To tal Cs i n water K con cen trat ion La ke area Fo rm fact or Age o f ET se dim ents Di rect fall out Decay fro m OA ~ Adv to water Reten tion rat e in lak e water Fa llou t of Cs Cs in OA Cs in lake water Depos itio n o n OA In put from OA La ke outf low Di sso lved fra ctio n Di ffus ion Di strib utio n c oef f Rel de pth Outflo w ar eas Catch men t a rea Fr om IA to OA M ean dep th Decay rat e fo r Cs Cs in IA Sed ET Sed ra te o f Cs Sed A La ke pH Cs in ET Cs in A Depos itio n o n IA In put from IA Gross sed ra te To talP Soil p erm eab ility fac tor Decay fro m ET BET Defau lt ru nof f rat e M odif ied run off r ate Fo rm fact or Decay fro m I A Adv to A Defau lt fa ll v eloc ity for Cs Precip itat ion To pa ssiv e s edi men ts Susp mat ter Dynam ic rati o Di ffus ion rate M onth of fall out Fo rm fact or Age o f ac tive se dim ent s Hypo tem p Age o f ET se dim ents Seaso nal mo der ator for Q Dcrit La titu de Precip itat ion BET DTA E and T b otto m a rea s Fo rm fact or ~ Al titud e ~ Seas norm Qmax Seas norm Qmin Catch men t a rea ~ Volum e La ke area M ax d ept h ~ M ean dep th Seas norm L atm ax Seas norm L atm in M ean ann ua l Q ~ ~ M ax d ept h ~ Rel de pth Emp m ea n a nnu al Q Seas norm Altma x Seas norm Altmi n Emp wate r Dynam ic rati o Depth of a cti ve s ed Lake model; La ke area Epi ar ea Fo rm fact or Age o f ac tive se dim ent s Ac tive vo l Bi otur bati on fact or Lars Hakansson, Epi vo l M ean dep th Gross sed ra te EpiT t o Hypo T University of Uppsala Volum e Epilim nic tem p Ac tive vo l Epi te mp Epi de pth M onth ly wate r di sch arg e Water dis cha rge Hypo Reten tion rat e in lak e water La titu de Hypol imn ic t emp Hypo tem p Seaso nal mo der ator for Q Th eor etic al wate r ret tim e La ke area Al titud e Hyp M ean ann ua l tem p Volum e Lo ngi tude Seaso nal va riab ility in epit emp ~ Seaso nal va riab ility no rm f or te mp Dynam ic rati o St ratif icat ion lim it Interaction of Cs-137 with lake sediments Lake water Burial of sediment Cs+ Aqueous Solid phases C C e D e rC k C k sC C o e e f e b i e t x x sK d (x) C (rsC ) s i i k sC k C sC t x b i f e i (Smith & Comans, Geochim. Cosmochim. Acta,1996) Fish sub- Fish sub-model model Steady state Biouptake (SS) WF delay factor Epi temperature (BUD) (MMET) Conc in fish Biological Fish weight halfilfe (BHL) (WF) K conc CF (CK) K moderator (Y K) Biouptake in Fish fish (F IF) excretion (FFO) BMF Conc in diss Biomagnification Feed factor (BMF) Susp part phase habit Aut matter (Cdiss) (HA) prod conc Conc in TP conc part phase (CTP) moderator (SPM) Physical decay rate (YAU) (CparT) (Rd) Part MA MET coeff Tot conc in Lake (Kd) water (C wa) volume All prod (Vol) Amount in Amount in Outflow areas moderator A-sediments ET-sediments (OA) (YAL) Diss fraction (Ddiss) = Distribution coefficient = Driving variables Caesium- potassium model Caesium-potassium model from measurements in lakes pre-Chernobyl Vanderploeg et al. 1975 Lesson 1: The old literature and empirical data from the nuclear weapons test period are very important Fish sub- Fish sub-model model Steady state Biouptake (SS) WF delay factor Epi temperature (BUD) (MMET) Conc in fish Biological Fish weight halfilfe (BHL) (WF) K conc CF (CK) K moderator (Y K) Biouptake in Fish fish (F IF) excretion (FFO) BMF Conc in diss Biomagnification Feed factor (BMF) Susp part phase habit Aut matter (Cdiss) (HA) prod conc Conc in TP conc part phase (CTP) moderator (SPM) Physical decay rate (YAU) (CparT) (Rd) Part MA MET coeff Tot conc in Lake (Kd) water (C wa) volume All prod (Vol) Amount in Amount in Outflow areas moderator A-sediments ET-sediments (OA) (YAL) Diss fraction (Ddiss) = Distribution coefficient = Driving variables New Model: Water kf kb Fish Lesson 2: Simple models often make better predictions than complex ones. Smith, J.T. “Nice work, but is it Science ?” Nature, 408 (2000); p. 293. Models should be as simple as possible… …. But no simpler ! (Albert Einstein) Size/trophic level/age effect Radiocaesium in fish in the Kiev Reservoir (Sansone and Voitsekhovitch, 1996) Developing a model for European lakes and rivers There are more than 500,000 lakes in Europe Even more rivers and streams… Lesson 3: Need to find general parameters which we can use to make predictions …. AQUASCOPE model Analysis of data from nuclear weapons testing and Chernobyl 2500 2000 1500 1000 500 Radiocaesium fallout (Bq/sqm) fallout Radiocaesium 0 Year AQUASCOPE Model Deposition to water surface Radionuclide Radionuclide inflow Lake/River outflow Radionuclide sedimentation Fish “Blind” predictions of radionuclides in rivers and lakes: Conceptual model of time changes in radiocaesium Soil ~ years Soil water Soil water < months ~ weeks Rivers/lakes Crops/vegetation ~ months < days ~ weeks Fish Milk Meat 137 2+ + + + Ca Sorption of Cs to K K Cs soils/sediments • After a radioactive fallout, sorption of 137Cs to soils increases over time, a process known as “fixation”: Aqueous Exchangeable “Fixed” Rapid kinetics Slow forward and reverse reactions. • Reduction of 137Cs concentration in soil water reduces transfers to rivers and lakes and uptake in vegetation. Cremers et al (1988); Comans et al. (1989); Smith & Comans (1996) “Fixation” of radiocaesium to soil 10000 Vegetation, n = 30 10 Rivers & Lakes, n = 23 9 Milk, n = 24 Milk, Austria 1000 8 (mBq/l) 7 Upland grass, UK (Bq/kg) 6 100 River Dnieper, 5 Ukraine (mBq/l) 4 Frequency 10 Cogra Moss Lake, 3 UK (mBq/l) 2 1 Cs-137 activity concentration activity Cs-137 1 0 0 1 2 3 4 5 6 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 Years since Chernobyl Half-life (years) Smith, et al. (1999) Environmental Science & Technology, 33, 49-54. Other processes leading to declines…. As well as fixation and decay: Slow migration to deeper soil layers by diffusion and bioturbation; Slow removal by runoff in dissolved and particulate phase of river water. Slow vertical migration in unmixed soils 137Cs in soil 4-6 years after Chernobyl % of total deposit per cm depth interval 0 10 20 30 40 50 60 70 0 2 4 6 8 Depth (cm) Depth 10 12 Grassland soil, Veprin, 1992 Grassland soil, Germany, 1990 14 Devoke Water peat bog, 1992 Changes over a longer timescale.. First few weeks More than 4-7 years Fast processes of Up to 4-7 years Slow desorption, vertical sorption, vertical “Fixation” migration, erosion migration, biological uptake Fish, UK Bq/kg Fish, Norway Bq/kg 10000 Vegetation Bq/kg Water mBq/l 1000 100 10 Csactivityconcentration 137 1 1986 1990 1994 1998 Date Smith, J.T. et al. (2000) Chernobyl’s legacy in food and water. Nature, 405. Runoff from catchments Cs-137 in rivers contaminated by Chernobyl 퐶표푛푐푒푛푡푟푎푡표푛 푛 푤푎푡푒푟 (퐵푞 푚3) 푅푢푛표푓푓 푐표푒푓푓푐푒푛푡 = 퐹푎푙푙표푢푡 푑푒푛푠푡푦 (퐵푞 푚2) Chernobyl Caesium-137 in Rivers - dissolved phase Kymijoki 0.1 1 - Kokemaenjoki Oulujoki 0.01 Kemijoki Tornionjoki Cs in water m water in Cs Dora Baltea 137 0.001 Dnieper Sozh Iput 0.0001 Besed Normalised Normalised Pripyat (Mozyr) Danube 0.00001 0 5 10 15 Temporal model Time since Chernobyl (yrs) Analyses for 23 catchments Radionuclide runoff: Physical Characteristics: •Size • Percentage Transfer (%) •Mean Slope •Annual Precipitation • Runoff Coefficient (R) •Land Cover Classification • Effective Ecological Half- •Soil Texture Life (Teff) •Compound Topographic Index •Carbon Content Results Summary of Carbon Mean Wetness (Cti) Wetness Soil Wetness: Soil Wetness: Carbon % > > % Carbon Precipitation Precipitation % of Inland Inland % of Soil Average % >13 (Cti) % >13 Mean Slope Slope Mean % of Sand Sand % of % of Clay Clay % of Mean Soil Mean (mm y (mm Content the Texture Water soils Soil ( correlations.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages96 Page
-
File Size-