A companion guide to the Hodgkin-Huxley papers Angus M Brown A companion guide to the Hodgkin-Huxley papers Angus M Brown 2 A companion guide to the Hodgkin-Huxley papers TABLE OF CONTENTS PREFACE .................................................................................................... 6 1. INTRODUCTION ..................................................................................... 8 Luigi Galvani ....................................................................................................... 11 Julius Bernstein .................................................................................................. 11 Kenneth Cole ...................................................................................................... 12 Alan Hodgkin ...................................................................................................... 15 Hodgkin meets Cole ........................................................................................... 17 Extracellular versus intracellular recordings ....................................................... 18 2. THE EFFECT OF SODIUM IONS ON THE ELECTRICAL ACTIVITY OF THE GIANT AXON OF THE SQUID .............................................................. 23 Ohm’s Law .......................................................................................................... 24 The Nernst equation .......................................................................................... 24 Effect of low [Na]o on the action potential ......................................................... 25 Action potential properties ................................................................................ 26 + Na free seawater abolishes the action potential .............................................. 28 Effect of variable [Na]o on the action potential .................................................. 29 Effect of altering [K]o on membrane potential ................................................... 31 GHK voltage equation ........................................................................................ 34 A diversion - astrocytes are K+ electrodes .......................................................... 35 Dissection of the GHK voltage equation ............................................................. 35 3. MEASUREMENT OF CURRENT-VOLTAGE RELATIONS IN THE MEMBRANE OF THE GIANT AXON OF LOLIGO .................................. 39 The voltage clamp .............................................................................................. 40 Membrane capacitance ...................................................................................... 43 The early and late membrane current amplitudes ............................................. 43 Temperature dependence .................................................................................. 45 4. CURRENTS CARRIED BY SODIUM AND POTASSIUM IONS THROUGH THE MEMBRANE OF THE GIANT AXON OF LOLIGO ........................... 46 3 A companion guide to the Hodgkin-Huxley papers Isolation of INa from the membrane current ....................................................... 47 The isolation process .......................................................................................... 48 Na+ conductance ................................................................................................ 50 The independence principle ............................................................................... 54 5. THE COMPONENTS OF MEMBRANE CONDUCTANCE IN THE GIANT AXON OF LOLIGO .............................................................................. 58 Tail currents ....................................................................................................... 59 Continuity of sodium conductance..................................................................... 62 Independence principle revisited ....................................................................... 63 K+ current ........................................................................................................... 65 Leak current ....................................................................................................... 67 6. THE DUAL EFFECT OF MEMBRANE POTENTIAL ON SODIUM CONDUCTANCE IN THE GIANT AXON OF LOLIGO ............................. 73 Time constant of inactivation ............................................................................. 74 Inactivation curve ............................................................................................... 75 INTERLUDE .............................................................................................. 78 7. A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE ........... 81 The computation process ................................................................................... 82 From experimental data to model ..................................................................... 83 The model .......................................................................................................... 85 Probability theory applied to the gating particles .............................................. 87 Calculation of rate constants .............................................................................. 87 The complete model .......................................................................................... 93 Action potential reconstruction ......................................................................... 94 Propagated action potential ............................................................................... 96 Ion conductances ............................................................................................... 96 Refractory period ............................................................................................... 99 Anode break excitation .................................................................................... 101 8. THE POTASSIUM PERMEABILITY OF A GIANT NERVE FIBRE .............. 105 The late outward current and K+ ...................................................................... 106 4 A companion guide to the Hodgkin-Huxley papers The tracer method ........................................................................................... 109 Electrical measurements .................................................................................. 110 The flux ratio under varying [K]o....................................................................... 111 The flux ratio under varying driving forces ....................................................... 112 Evidence of interaction .................................................................................... 113 9. CONCLUSION ..................................................................................... 116 Currents that control firing frequency.............................................................. 117 Application of the Hodgkin-Huxley model to mammalian neurones ................ 119 Predictions of ion channel selectivity ............................................................... 120 Ion channel structure ....................................................................................... 121 Application of the Hodgkin Huxley model to ion channels ............................... 123 J Walter Woodbury and the Nobel Prize nomination ....................................... 125 Autobiographical Chapters ............................................................................... 126 Specialist texts .................................................................................................. 127 Resources ......................................................................................................... 128 Conclusion ........................................................................................................ 128 REFERENCES .......................................................................................... 130 5 A companion guide to the Hodgkin-Huxley papers PREFACE 6 A companion guide to the Hodgkin-Huxley papers This guide is intended for students who are approaching the work of Hodgkin and Huxley for the first time. It has been written as a companion piece for use in conjunction with the Hodgkin and Huxley papers. The core canon of this work are the five seminal papers published in 1952 (Hodgkin & Huxley, 1952a-d; Hodgkin et al., 1952), and although I have bookended these with two additional papers, which complete the narrative, the constant presence in these seven papers is Alan Hodgkin. These additional papers were co-authored with Bernard Katz (Hodgkin & Katz, 1949a) and Richard Keynes (Hodgkin & Keynes, 1955), where the former acts as a logical introduction to the work, and the latter provides a suitable conclusion, predicting the presence of ion channels, the elementary units that underlie electrical activity. I have included an introduction (Chapter 1) that places the Hodgkin and Huxley work in the appropriate historical context, commencing with the discovery of bioelectricity by Galvani in 1791 and concluding with the recording of the first intracellular action potential in 1939. I have dedicated a chapter to each of the seven papers (Chapters 2 to 8), describing in detail key aspects of the paper to aid student understanding. Where I have considered detail lacking in the original papers I have added relevant sections, most notably in relation to the Goldman-Hodgkin-Katz
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages140 Page
-
File Size-