Estimation Steps Point Estimators Statistics Point Estimates

Estimation Steps Point Estimators Statistics Point Estimates

IntroductiontoEstimation POINT&INTERVALESTIMATION Basicdefinitionsandconcepts AND Theassignmentofvalue(s)toapopulationparameter (INTRODUCTIONTOTESTING) basedonavalueofthecorrespondingsamplestatisticis calledestimation. The value(s) assignedto a population parameter based on thevalueofasamplestatisticiscalledanestimate. Thesamplestatisticusedtoestimateapopulation parameteriscalledanestimator. 2 Estimationsteps PointEstimators Theestimationprocedureinvolvesthefollowingsteps: APointEstimation 1. Select a sample. The value of a samplestatistic that isused to estimate a populationparameteriscalledapointestimate.Usually, 2. Collecttherequiredinformationfromthemembersof wheneverweusepointestimation,wecalculatethemarginof the sample. errorassociated with that point estimation, which is s 3. Calculatethevalueofthesamplestatistic. calculatedasfollows: Margin of error 1.96 x or 1.96 x 4. Assigg()pgppnvalue(s)tothecorrespondingpopulation Pointestimateisbasedonjustonesample,wecannot parameter. expectittobeequaltothecorrespondingpopulation parameter.Indeed,eachsamplewillhaveadifferent, non of them isequal to. But they are all unbiased estimatesof.(Recallthatunbiased meanstheir expectedvalueisequalto.) 3 4 Statistics PointEstimates Statistics Parameters Z Astatisticisapropertyofasamplefromthe Z Instatisticalinference,thetermparameter isusedtodenote population. aquantity,say,thatisapropertyofanunknownprobability Z Astatisticisdefinedtobeanyfunctionofrandom distribution. variables.So,itisalsoarandomvariable.For Z Forexampp,le,themean, variance, orap articularquantile of example,thesamplemean,samplevariance,ora theprobabilitydistribution particularsamplequantile. Z Parametersareunknown,andoneofthegoalsofstatistical Z The observedvalue of the statisticcan be ccalculatedalculated inferenceis to estimate them . fromtheobserveddatavaluesofrandomvariables. Estimation Examples of statistics: Z Aprocedureof“guessing”propertiesofthepopulationfrom whichdata are collected. X XX sample mean X 12 n Z Apointestimateofanunknownparameterisastatisticthat n representsa“guess”oftheparameterofinterest. n 2 Z B ()XXi There maybe more than one sensiblepoint estimate of a sample variance S 2 i1 n parameter. 5 1 6 Therelationshipbetweenanunknown PropertiesofEstimatorsthatWeDesire parameteranditspointestimator UbiUnbiase dness: E( ˆ ) Inotherwordswewouldwishthattheexpectedvalueof theestimatoristhesameasitstruevalue. Wedefinebiasofanestimator asthedifferencebetween theexpectedvalueoftheestimatorandthetruevaluein thepppopulation: Efficiency:wewishtominimizethemeansquareerror aroundthetruevalue.Theefficiencytellsushowwellthe estimatorperformsinpredicting.Amongunbiased estimatorstherefore,wewanttheonewiththesmallest variance. Consistency.Assamplesizeincreases,variationofthe estimatorfromthetruepopulationvaluedecreases. 7 8 Unbiasedness Efficiency P(X) Sampling Unbiased Biased P(X) Distribution of Median Sampling Distribution of Mean 9 10 Consistency Intervalestimation: Larger General approach P(X) sample size B Smaller sample size A 11 12 IntervalEstimation ConfidenceIntervalEstimation Definition Outline: Ininterval estimation,aninterval is constructed around Procedure: thepointestimate,anditisstatedthatthisintervalislikely 1. Sample point estimator ( X or p ) tocontainthecorrespondingpopulationparameter. 2. Confidence level and Table Zortn-1 3. Formulas compute UCL and LCL: point estimator margin of error x x $1370 13 $1130 $1610 IntervalEstimationofthePopulationMean Eachintervalisconstructedwithregardtoagivenconfidencelevel Intervalestimationofapopulation andiscalledaconfidenceinterval. The confidence levelassociated with a confidence intervalstates how mean: The case of known5 muchconfidencewehavethatthisintervalcontainsthetrue populationparameter.Theconfidencelevelisdenotedby(1– ))%100%. The(1– )100%confidenceintervalfor- (populationmean)is: x z x if is known and x zsx if is not known, where x / n and sx s/ n Thevalueofz usedherecanbefoundfromthestandardnormal distributiontable,forthegivenconfidencelevel. Themaximumerrorofestimatefor),denotedbyE,isthequantity thatis subtracted from and added to the value ofx to obtain a confidenceintervalfor).Thus, E z x or zsx 16 17 5 IntervalEstimationofthePopulationMean IntervalEstimationofthePopulationMeanwhen is when5 is known:Example known:AnswerstotheExample x Apublishingcompanyhasjustpublishedanewcollegetextbook. Herewetakeadvantageofourknowledgeondistributionofto Beforethecomppyanydecidesthe priceatwhichtosellthis developaconfidenceintervalfor. 4.50 textbook,itwantstoknowtheaveragepriceofallsuch a) n=36,x =$70.50,and =$4.5,thus: $.75 x n textbooksinthemarket.Theresearchdepartmentatthe Pointestimateof) =x =$70.50 36 company tooka sample of 36 comparable textbooksand Marginof error= 1.96 x 1.96(.75) $1.47 collectedinformationontheirprices.Thisinformationproduces b) Confidencelevelis90%or.90;andz =1.65. ameanpriceof$70.50forthissample.Itisknownthatthe x z standddiidarddeviationo fhfthepr iceso fllhfallsuchtext boo ki$450ksis$4.50. x 70.50 1.65(.75) 70.50 1.24 (a) Whatisthepointestimateofthemeanpriceofallsuch (70.50 -1.24) to (70.50 1.24) textbooks? Whatis the margin of errorfor the estimate? $69.26 to $71.74 (b) Constructa90%confidenceintervalforthemeanpriceofall Basedonourresults,wecansaythatweare90%confidentthat suchcollegetextbooks. themean price of all such college textbooks is between $69.26and$71.74. 18 19 Example 1: 1. Interval Estimation for Population Mean Answer: Example 1: ( known case) • n = 49 In an effort to estimate the mean amount spent per customer for dinner at a major Atlanta restaurant. Data were collected X $24.8 for a sample of 49 customers over a three-week period. Assume a population standard deviation of $5. =$5 a. At the 95% confidence, what is the margin error? • Z: (1- )/2 = 0.95/2 = 0.475 Table 1: Z = 1.96 5 •1. Z x (1.96) 1.4 b. If the sample mean is $24.80, What is the 95% / 2 n 49 confidence interval for the population mean? 2. UCL X Z x 24 .8 1.4 26 .2 / 2 n LCL X Z x 24 .8 1.4 23 .4 / 2 n : [23.4, 26.2] IntervalEstimationofthePopulationMean when5 isunknown Intervalestimationofapopulation Insteadofpopulationstandarddeviation wehave mean: The case of unknown5 samplestandard deviation s. Insteadofnormaldistribution,wehavetdistribution Thetdistribution isusedtoconstructaconfidence intervalabout if: 1. Thepopul ati on fromwhi c h thesamp le is drawn is (approximately)normallydistributed; 2. Thesampp(,);lesizeissmall(thatis,n<30); 3. Thepopulationstandarddeviation,,isnotknown. 22 23 t The Distribution Thet Distribution:Example Thetdistribution isaspecifictypeofbellshapeddistributionwith alowerheightandawiderspreadthanthestandardnormal Findthevalueoft for16degreesoffreedomand.05areain distribution.Asthesamppg,lesizebecomeslarger,thet t distributionapproachesthestandardnormaldistribution.A ther ig ht ta ilo fa dis tr ibu tioncurve. specifictdistributiondependsononlyoneparameter,calledthe Area in the Right Tail Under the t Distribution Curve degreesof freedom (df). The mean of the t distributionis equal df .10 .05 .025 ….001 df df to0anditsstandarddeviationisfoundby.The/( 2) 1 3.078 6.314 12.706 … 318.309 graphbelowdepictsthecaseofdf=3. 2 1.886 2.920 4.303 … 22.327 3 1.638 2.353 3.182 … 10.215 Thestandarddeviationofthe Thestandarddeviationofthet . … … … … … standardnormaldistributionis1.0 distributionis 9 /(9 2) 1.134 16 1. 337 1. 746 2. 120 … 3. 686 . … … … … … Therequiredvalueoft for16 df and.05areaintherighttail. 24 25 - = 0 ConfidenceIntervalforPopulationmean Using t (continued) The Distribution thet Distribution Thet distributionwith16degreesoffreedom,areasunderthe rightand the left tails . The (1– )100%confidenceinterval for) is s x ts where s x x n Thevalueoft isobtainedfromthet distributiontableforn – 1dffddhfdlldegreesoffreedomandthegivenconfidencelevel. .05 1.746 26 -1.746 0 27 ConfidenceIntervalforPopulationmean Using ConfidenceIntervalforPopulationmean Using thet Distribution:Example thet Distribution:ExampleAnswered Dr.Moorewantedtoestimatethemeancholesterollevelfor Confidencelevelis95%or.95,withdf =n – 1=25– 1=24 Areaineachtail=.5– (.95/2)=.5R .4750=.025 alladult menliving in Hartford. He took a sampleof 25 adult s Thevalueoft intherighttailis2.064,and s 12 menfromHartfordandfoundthatthemeancholesterol x 2.40 n 25 levelforthissampleis186withastandarddeviationof12. Assumethatt hec hlholestero lllleve lflsfora lldllladultmenin df Hartfordare(approximately)normallydistributed.Construct = 24 a 95%confidence interval forthe population mean). .025 .025 .4750 .4750 x tsx 186 2.064(2.40) 186 4.95 181.05 to 190.95 Thus,wecanstatewith95%confidencethatthemean cho les tero l leve l fora lla du ltmen liv ing in Har for d lies be tween 181.05and190.95. 28 29 Example 2: Example 2: ( known case) Given: n = 100,,,, X = 49, S = 8.5, 1- = .95 The mean flying time for pilots at Continental Think: What to estimate? Use Z or t? Airlines is 49 hours per month. This mean was Answer: based on a sample of 100 pilots and the sample • Sample info (given): n = 100,X = 49, S = 8.5 standard deviation was 8.5 hours. • t: 1- =0.95, so /2=0.025, d.f.=n-1=99 Table 2: dfd.f.=100, /2=0. 025 t=1. 984 a. At 95% confidence, what is the margin of error? d.f.=80, /2=0.025 t=1.990 100 99 b. What is the 95% confidence interval estimate of *Interpolation: t 1.984 (1.990 1.984) 1.9843 the population mean flying time? 100 80 S 8.5 c. The mean flying time for pilots at United Airlines a. m.o.e.: m.o.e. t 1.9843 1.69 / 2

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us