Free Pressure, Free Entropy and Hypothesis Testing

Free Pressure, Free Entropy and Hypothesis Testing

Free pressure, free entropy and hypothesis testing Fumio Hiai (Tohoku University) 2008, January (at Banff) 1 Plan 1. Hypothesis testing: conventional framework 2. Free pressure and free entropy: microstate approach 3. Free analog of hypothesis testing – free Stein’s lemma 4. The single variable case 2 1. Hypothesis testing: conventional frame- work • (Hn): a sequence of finite-dimensional Hilbert spaces • ρn, σn: states on Hn • Null-hypothesis (H0): the true state of the nth system is ρn • Counter-hypothesis (H1): the true state of the nth system is σn • Test: binary measurement 0 ≤ Tn ≤ I on Hn Tn corresponds to outcome 0, I − Tn corresponds to outcome 1 outcome = 0: (H0) is accepted, outcome = 1: (H1) is accepted • Error probabilities of the first/second kinds: αn(Tn) := ρn(In − Tn), βn(Tn) := σn(Tn) 3 Bayesian error probabilities • ρn and σn have a priori probabilities πn and 1 − πn • Optimal Bayesian probability of an erroneous decision: Pmin(ρn : σn|πn) := min πnαn(Tn) + (1 − πn)βn(Tn) 0≤Tn≤I n o Results for i.i.d. case ⊗n ⊗n ⊗n • I.i.d. setting: Hn = H , ρn = ρ1 , σn = σ1 • Rate function: ψ(t) := log Tr ρt σ1−t, ϕ(a) := max {at − ψ(t)} 1 1 0≤t≤1 Stein’s lemma (H-Petz, 1991; Ogawa-Nagaoka, 2000) 1 lim log min{βn(Tn) : αn(Tn) ≤ ε} = −S(ρ1, σ1) for any 0 <ε< 1. n→∞ n 4 Chernoff bound (Audenaert-Calsamiglia-et al., Nussbaum-Szko la, 2006) 1 lim log Pmin(ρn : σn|π)= min ψ(t)= −ϕ(0) n→∞ n 0≤t≤1 Hoeffding bound (Hayashi, Nagaoka, 2006) For any r ∈ R, 1 1 −tr − ψ(t) inf lim sup log βn(Tn) : lim sup log αn(Tn) < −r = − max . (Tn)( n n n n ) 0≤t<1 1 − t Results for non-i.i.d. case H-Mosonyi-Ogawa • Large deviations and Chernoff bound for certain correlated states on the spin chain, J. Math. Phys. • Error exponents in hypothesis testing for correlated states on a spin chain, J. Math. Phys. 5 2. Free pressure and free entropy: microstate approach sa C ∗ • For R> 0, (MN )R := A ∈ MN ( ) : A = A , kAk≤ R n o sa ∼ RN 2 • ΛN : the “Lebesgue” measure on MN = (n) ⋆n ∗ • AR := C([−R, R]) : the n-fold universal free product C -algebra, ∗ i.e., the C -completion of ChX1,...,Xni w.r.t. the norm sa N kpkR := sup kp(A1,...,An)k : A1,...,An ∈ (MN )R, N ∈ n o (n) (n) • TS(AR ): the set of tracial states on AR 6 (n) • Free entropy: for µ ∈ TS(AR ), 1 n ( ):= lim lim sup logΛ⊗n(Γ ( ; )) + log χR µ 2 N R µ N,m,δ N m→∞,δց0 N→∞ "N 2 # (n) sa • Free pressure (free energy): for h ∈ (AR ) (considered as a free probabilistic potential), 1 π (h) := lim sup log exp −N 2tr (h(A ,...,A )) R 2 sa n N 1 n N→∞ "N (M ) Z N R ⊗n n dΛN (A1,...,An)+ log N 2 # (n) • η-version of free entropy: for µ ∈ TS(AR ), (n) sa ηR(µ) := inf µ(h)+ πR(h) : h ∈ (AR ) , n o the (minus) Legendre transform of πR. 7 (n) sa • For every h0 ∈ (AR ) , (n) πR(h0) = max −µ(h0)+ ηR(µ) : µ ∈ TS(AR ) . (n) n o µ0 ∈ TS(AR ) is called an equilibrium tracial state associated with h0 if πR(h0)= −µ0(h0)+ ηR(µ0). (n) sa Note An equilibrium tracial state exists for every h ∈ (AR ) , and (n) sa is unique for almost all h ∈ (AR ) (i.e., in a dense Gδ subset) by the Baire category theorem. But it is not easy to prove the uniqueness for a given h. Fact ηR(µ) ≥ χR(µ) and equality holds if X1,...,Xn are free w.r.t. µ. 8 3. Free analog of hypothesis testing – free Stein’s lemma (n) sa N • Micro Gibbs measure: for h ∈ (AR ) and N ∈ , h 1 2 dλ (A1,...,An) := exp −N trN (h(A1,...,An)) R,N Zh R,N ⊗n × χ sa n (A1,...,An) dΛ (A1,...,An) (MN )R N h with normalization constant ZR,N . (n) sa • Micro pressure: for h ∈ (AR ) , h PR,N (h) := log ZR,N 2 ⊗n = log exp −N trN (h(A1,...,An)) dΛ (A1,...,An) (M sa)n N Z N R (n) sa h0 (n) • N-level tracial state: for each h0 ∈ (AR ) , µR,N ∈ TS(AR ) is defined by h0 h0 (n) µ (h) := trN (h(A1,...,An)) dλ (A1,...,An) for h ∈ A . R,N (M sa)n R,N R Z N R 9 Fact If limit exists in the definition of πR(h0), i.e., 1 n ( )= lim ( )+ log πR h0 2PR,N h0 N , N→∞ N 2 ! h0 then any limit point of (µR,N )N∈N is an equilibrium tracial state associ- ated with h0. ————————— (n) sa Let h0, h1 ∈ (AR ) and consider the hypothesis testing for h0 h1 (λR,N )N∈N (null-hypothesis) vs. (λR,N )N∈N (counter-hypothesis). sa n For a Borel subset (test) T ⊂ (MN )R, h0 c h1 αN (T ) := λR,N (T ), βN (T ) := λR,N (T ). 10 For the free Stein’s lemma, define for 0 <ε< 1 h1 h0 h0 sa n h1 c N βε(λR,N kλR,N ) := min λR,N (T ) : T ⊂ (MN )R, λR,N (T ) ≤ ε , N ∈ , n 1 o B((λh1 ) (λh0 )) := inf lim inf log λh0 (T ): lim λh1 (T c ) = 0 , R,N k R,N 2 R,N N R,N N (TN )( N→∞ N N→∞ ) 1 B((λh1 ) (λh0 )) := inf lim sup log λh0 (T ): lim λh1 (T c ) = 0 , R,N k R,N 2 R,N N R,N N (TN )( N→∞ N N→∞ ) 1 (( h1 ) ( h0 )) := inf lim log h0 ( ): lim h1 ( c ) = 0 B λR,N k λR,N 2 λR,N TN λR,N TN . (TN )(N→∞ N N→∞ ) 1 h1 h0 h1 h0 sup lim inf log βε(λR,N kλR,N ) = B((λR,N )k(λR,N )) ε>0 N→∞ N 2 ! 1 (( h1 ) ( h0 )) = sup lim sup log ( h1 h0 ) ≤ B λR,N k λR,N 2 βε λR,N kλR,N ε>0 N→∞ N ! 11 Theorem Assume that there is a unique equilibrium tracial state µh1 associated with h1. Then for every 0 <ε< 1, 1 lim sup log β (λh1 λh0 ) η (µ ) µ (h ) π (h ) 2 ε R,N k R,N ≥ R h1 − h1 0 − R 0 N→∞ N ≥ χR(µh1) − µh1(h0) − πR(h0). If, moreover, limit exists in the definition of πR(h1), then for every 0 <ε< 1, 1 h1 h0 lim inf log βε(λ kλ ) ≥ ηR(µh ) − µh (h0) − πR(h0). N→∞ N 2 R,N R,N 1 1 Theorem Assume that limit exists in the definition of πR(h1). Then h1 for any limit point µ of (µR,N )N∈N, h1 h0 B((λR,N )k(λR,N )) ≥ ηR(µ) − µ(h0) − πR(h0). h1 Moreover, there exists a limit point µ1 of (µR,N )N∈N such that h1 h0 B((λR,N )k(λR,N )) ≥ ηR(µ1) − µ1(h0) − πR(h0). 12 In particular when h0 = 0, the theorems give (n) sa Cor. Let h ∈ (AR ) and assume that there is a unique equilibrium tracial state µh associated with h. Then χR(µh) ≤ ηR(µh) 1 n lim sup log min Λ⊗n(T ) : T (M sa)n , λh (T c) ε + log N ≤ 2 N ⊂ N R R,N ≤ N→∞ "N 2 # n o for every 0 <ε< 1. If, moreover, limit exists in the definition of πR(h), then for every 0 <ε< 1, ηR(µh) 1 ⊗n sa n h c n ≤ lim inf log min ΛN (T ) : T ⊂ (MN )R, λR,N (T ) ≤ ε + log N . N→∞ "N 2 2 # n o 13 (n) sa Cor. Let h ∈ (AR ) and assume that limit exists in the definition of h πR(h). Then for any limit point µ of (µR,N )N∈N, ηR(µ) 1 n inf lim sup logΛ⊗n(T )+ log N : lim λh (T c ) = 0 . ≤ 2 N N R,N N (TN )( N→∞ N 2 ! N→∞ ) h Moreover, for some limit point µ1 of (µR,N )N∈N, ηR(µ1) 1 n inf lim inf logΛ⊗n( )+ log : lim h ( c ) = 0 ≤ 2 N TN N λR,N TN . (TN )( N→∞ N 2 ! N→∞ ) ————————— (n) sa sa n Let h0 ∈ (AR ) . For each (A, ...,An) ∈ (MN )R define (n) µ (h) := tr (h(A ,...,A )), h ∈ A , N,(A1,...,An) N 1 n R which is a random tracial state when (A1,...,An) is distributed under h0 λR,N . 14 Fact (1) If the random tracial state µ satisfies LDP in the scale N,(A1,...,An) −2 N with a good rate function having a unique minimizer µ0, then µ weakly* converges to µ almost surely and so N,(A1,...,An) 0 h0 N λR,N (ΓR(µ0; N,m,δ)) → 1 as N →∞ for every m ∈ and δ > 0. h0 N (2) If λR,N (ΓR(µ0; N,m,δ)) → 1 as N → ∞ for every m ∈ and δ > 0, h0 then µR,N → µ0 weakly* as N →∞. Cor In addition to the assumption of (2), assume (i) µ0 is a unique equilibrium tracial state associated with h0, or (ii) limit exists in the definition of πR(h0). Then ηR(µ0)= χR(µ0). Moreover, in the case (ii), µ0 is regular.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us