Chapter 4: Threads

Chapter 4: Threads

Chapter 4: Threads Operating System Concepts with Java – 8th Edition 14.1 Silberschatz, Galvin and Gagne ©2009 Chapter 4: Threads n Overview n Multithreading Models n Thread Libraries n Threading Issues n Operating System Examples n Windows XP Threads n Linux Threads Operating System Concepts with Java – 8th Edition 14.2 Silberschatz, Galvin and Gagne ©2009 Objectives n To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of multithreaded computer systems n To discuss the APIs for the Pthreads, Win32, and Java thread libraries n To examine issues related to multithreaded programming Operating System Concepts with Java – 8th Edition 14.3 Silberschatz, Galvin and Gagne ©2009 Single and Multithreaded Processes Operating System Concepts with Java – 8th Edition 14.4 Silberschatz, Galvin and Gagne ©2009 Multithreaded Server Architecture Operating System Concepts with Java – 8th Edition 14.5 Silberschatz, Galvin and Gagne ©2009 Benefits n Responsiveness l Allows a program continue running if part of it is blocked or its is performing a lengthy operation n Resource Sharing l Threads share the memory and the resources of the parent process n Economy l In Solaris, creating a process is 30 times slower than creating a thread, context switching is 5 times slower. n Scalability l Multithreading on a multi-CPU machine increase parallelism Operating System Concepts with Java – 8th Edition 14.6 Silberschatz, Galvin and Gagne ©2009 Multicore Programming n Multicore systems putting pressure on programmers, challenges include l Dividing activities 4 Find area that can be divided into separate, concurrent tasks l Balance 4 Ensure concurrent tasks perform equal work of equal value l Data splitting 4 Data accessed must be divided to run on speparate cores. l Data dependency 4 One task depends on data from another, ensure synchrornization l Testing and debugging 4 Test many execution path Operating System Concepts with Java – 8th Edition 14.7 Silberschatz, Galvin and Gagne ©2009 Concurrent Execution on a Single-core System Parallel Execution on a Multicore System Operating System Concepts with Java – 8th Edition 14.8 Silberschatz, Galvin and Gagne ©2009 User Threads n Thread management done by user-level threads library n Three primary thread libraries: l POSIX Pthreads l Win32 threads l Java threads Operating System Concepts with Java – 8th Edition 14.9 Silberschatz, Galvin and Gagne ©2009 Kernel Threads n Supported by the Kernel/OS n All contemporary OS support kernel threads n Examples l Windows XP/2000 l Solaris l Linux l Tru64 UNIX l Mac OS X Operating System Concepts with Java – 8th Edition 14.10 Silberschatz, Galvin and Gagne ©2009 Multithreading Models n Many-to-One: map many user-level threads to one kernel thread n One-to-One: map each user-level thread to a kernel thread n Many-to-Many: multiplexes many user-level threads to a smaller or equal number of kernel theads Operating System Concepts with Java – 8th Edition 14.11 Silberschatz, Galvin and Gagne ©2009 Many-to-One Model n Many user-level threads mapped to single kernel thread n Examples: lSolaris Green Threads lGNU Portable Threads Operating System Concepts with Java – 8th Edition 14.12 Silberschatz, Galvin and Gagne ©2009 One-to-One n Each user-level thread maps to kernel thread n Examples l Windows NT/XP/2000 l Linux l Solaris 9 and later Operating System Concepts with Java – 8th Edition 14.13 Silberschatz, Galvin and Gagne ©2009 Many-to-Many Model n Allows many user level threads to be mapped to many kernel threads n Allows the operating system to create a sufficient number of kernel threads n Solaris prior to version 9 n Windows NT/2000 with the ThreadFiber package Operating System Concepts with Java – 8th Edition 14.14 Silberschatz, Galvin and Gagne ©2009 Two-level Model n Similar to M:M, except that it allows a user thread to be bound to kernel thread n Examples l IRIX l HP-UX l Tru64 UNIX l Solaris 8 and earlier Operating System Concepts with Java – 8th Edition 14.15 Silberschatz, Galvin and Gagne ©2009 Thread Libraries n Thread library provides programmer with API for creating and managing threads n Two primary ways of implementing lLibrary entirely in user space lKernel-level library supported by the OS Operating System Concepts with Java – 8th Edition 14.16 Silberschatz, Galvin and Gagne ©2009 Pthreads n May be provided either as user-level or kernel- level n A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization n API specifies behavior of the thread library, implementation is up to development of the library n Common in UNIX operating systems (Solaris, Linux, Mac OS X) Operating System Concepts with Java – 8th Edition 14.17 Silberschatz, Galvin and Gagne ©2009 Java Threads n Java threads are managed by the JVM n Typically implemented using the threads model provided by underlying OS n Java threads may be created by: lExtending Thread class lImplementing the Runnable interface Operating System Concepts with Java – 8th Edition 14.18 Silberschatz, Galvin and Gagne ©2009 Threading Issues n Semantics of fork() and exec() system calls n Thread cancellation of target thread l Asynchronous or deferred n Signal handling n Thread pools n Thread-specific data n Scheduler activations Operating System Concepts with Java – 8th Edition 14.19 Silberschatz, Galvin and Gagne ©2009 Threading Issues-Semantics of fork() and exec() n Does fork() duplicate only the calling thread or all threads? n One that duplication all threads – the child thread does not call exec() after forking n Only the thread that invoked the fork() system call is duplicated – exec() is called immediately after forking Operating System Concepts with Java – 8th Edition 14.20 Silberschatz, Galvin and Gagne ©2009 Threading Issues-Thread Cancellation n Terminating a thread before it has finished n Two general approaches: l Asynchronous cancellation terminates the target thread immediately – it is troublesome if a thread to be canceled is in the middle of updating shared data l Deferred cancellation allows the target thread to periodically check if it should be cancelled – allow threads to be canceled safely Operating System Concepts with Java – 8th Edition 14.21 Silberschatz, Galvin and Gagne ©2009 Threading Issues-Signal Handling n Signals are used in UNIX systems to notify a process that a particular event has occurred n A signal handler is used to process signals 1. Signal is generated by particular event 2. Signal is delivered to a process 3. Signal is handled n Options: l Deliver the signal to the thread to which the signal applies l Deliver the signal to every thread in the process l Deliver the signal to certain threads in the process l Assign a specific thread to receive all signals for the process Operating System Concepts with Java – 8th Edition 14.22 Silberschatz, Galvin and Gagne ©2009 Thread Pools n Create a number of threads in a pool where they await work n Advantages: l Usually slightly faster to service a request with an existing thread than create a new thread l Allows the number of threads in the application(s) to be bound to the size of the pool Operating System Concepts with Java – 8th Edition 14.23 Silberschatz, Galvin and Gagne ©2009 Thread Specific Data n Allows each thread to have its own copy of data n Useful when you do not have control over the thread creation process (i.e., when using a thread pool) Operating System Concepts with Java – 8th Edition 14.24 Silberschatz, Galvin and Gagne ©2009 Scheduler Activations n Both M:M and Two-level models require communication to maintain the appropriate number of kernel threads allocated to the application n Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread library n This communication allows an application to maintain the correct number kernel threads Operating System Concepts with Java – 8th Edition 14.25 Silberschatz, Galvin and Gagne ©2009 Operating System Examples n A lightweight process (LWP) – an intermediate data structure n To the user thread, it is a virtual processor that schedule a user thread to run. n Each LWP is attached to a kernel thread, and OS schedules kernel thread to run. n Example: l Windows XP Threads l Linux Thread, not distinguish b/w processes and threads Operating System Concepts with Java – 8th Edition 14.26 Silberschatz, Galvin and Gagne ©2009 Windows XP Threads n Implements the one-to-one mapping, kernel-level n Each thread contains l A thread id l Register set l Separate user and kernel stacks l Private data storage area n The register set, stacks, and private storage area are known as the context of the threads n The primary data structures of a thread include: l ETHREAD (executive thread block) l KTHREAD (kernel thread block) - LWP l TEB (thread environment block) Operating System Concepts with Java – 8th Edition 14.27 Silberschatz, Galvin and Gagne ©2009 Windows XP Threads Operating System Concepts with Java – 8th Edition 14.28 Silberschatz, Galvin and Gagne ©2009 Linux Threads nLinux refers to them as tasks rather than threads nThread creation is done through clone() system call nclone() allows a child task to share the address space of the parent task (process) Operating System Concepts with Java – 8th Edition 14.29 Silberschatz, Galvin and Gagne ©2009 Linux Threads Operating System Concepts with Java – 8th Edition 14.30 Silberschatz, Galvin and Gagne ©2009 End of Chapter 14 Operating System Concepts with Java – 8th Edition 14.31 Silberschatz, Galvin and Gagne ©2009.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us