Maternal and Neonatal Outcomes of Elective Induction of Labor

Maternal and Neonatal Outcomes of Elective Induction of Labor

Evidence Report/Technology Assessment Number 176 Maternal and Neonatal Outcomes of Elective Induction of Labor Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-02-0017 Prepared by: Stanford University–UCSF Evidence-based Practice Center, Stanford, CA Investigators Aaron B. Caughey, M.D., M.P.P., M.P.H., Ph.D. Vandana Sundaram, M.P.H. Anjali J. Kaimal, M.D. Yvonne W. Cheng, M.D., M.P.H. Allison Gienger, B.A. Sarah E. Little, M.D. Jason F. Lee, M.P.H. Luchin Wong, MD, M.P.H. Brian L. Shaffer, M.D. Susan H. Tran, M.D. Amy Padula, M.P.H. Kathryn M. McDonald, M.M. Elisa F. Long, Ph.D. Douglas K. Owens, M.D., M.S. Dena M. Bravata, M.D., M.S. AHRQ Publication No. 09-E005 March 2009 This document is in the public domain and may be used and reprinted without permission except those copyrighted materials noted for which further reproduction is prohibited without the specific permission of copyright holders. Suggested Citation: Caughey AB, Sundaram V, Kaimal AJ, Cheng YW, Gienger A, Little SE, Lee JF, Wong L, Shaffer BL, Tran SH, Padula A, McDonald KM, Long EF, Owens DK, Bravata DM. Maternal and Neonatal Outcomes of Elective Induction of Labor. Evidence Report/Technology Assessment No. 176. (Prepared by the Stanford University-UCSF Evidenced-based Practice Center under contract No. 290-02-0017.) AHRQ Publication No. 09-E005. Rockville, MD.: Agency for Healthcare Research and Quality. March 2009. The investigators do no have any affiliations or financial involves that conflict with the material presented in this report. ii Preface The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-Based Practice Centers (EPCs), sponsors the development of evidence reports and technology assessments to assist public- and private-sector organizations in their efforts to improve the quality of health care in the United States. The reports and assessments provide organizations with comprehensive, science-based information on common, costly medical conditions and new health care technologies. The EPCs systematically review the relevant scientific literature on topics assigned to them by AHRQ and conduct additional analyses when appropriate prior to developing their reports and assessments. To bring the broadest range of experts into the development of evidence reports and health technology assessments, AHRQ encourages the EPCs to form partnerships and enter into collaborations with other medical and research organizations. The EPCs work with these partner organizations to ensure that the evidence reports and technology assessments they produce will become building blocks for health care quality improvement projects throughout the Nation. The reports undergo peer review prior to their release. AHRQ expects that the EPC evidence reports and technology assessments will inform individual health plans, providers, and purchasers as well as the health care system as a whole by providing important information to help improve health care quality. We welcome comments on this evidence report. They may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither Road, Rockville, MD 20850, or by e-mail to [email protected]. Carolyn M. Clancy, M.D. Jean Slutsky, P.A., M.S.P.H. Director Director, Center for Outcomes and Evidence Agency for Healthcare Research and Quality Agency for Healthcare Research and Quality Beth A. Collins Sharp, Ph.D., R.N. Margaret Coopey, R.N., M.G.A., M.P.S. Director, EPC Program EPC Program Task Order Officer Agency for Healthcare Research and Quality Agency for Healthcare Research and Quality iii Acknowledgments We thank Marilyn Tinsley at the Stanford University Lane Library for her help with the literature searches. We also acknowledge with much gratitude our expert advisors and peer reviewers who are listed in Appendix E. iv Structured Abstract Background. Induction of labor is on the rise in the U.S., increasing from 9.5 percent in 1990 to 22.1 percent in 2004. Although, it is not entirely clear what proportion of these inductions are elective (i.e. without a medical indication), the overall rate of induction of labor is rising faster than the rate of pregnancy complications that would lead to a medically indicated induction. However, the maternal and neonatal effects of induction of labor are unclear. Many studies compare women with induction of labor to those in spontaneous labor. This is problematic, because at any point in the management of the woman with a term gestation, the clinician has the choice between induction of labor and expectant management, not spontaneous labor. Expectant management of the pregnancy involves nonintervention at any particular point in time and allowing the pregnancy to progress to a future gestational age. Thus, women undergoing expectant management may go into spontaneous labor or may require indicated induction of labor at a future gestational age. Objectives. The Stanford-UCSF Evidence-Based Practice Center examined the evidence regarding four Key Questions: 1) What evidence describes the maternal risks of elective induction versus expectant management? 2) What evidence describes the fetal/neonatal risks of elective induction versus expectant management? 3) What is the evidence that certain physical conditions/patient characteristics are predictive of a successful induction of labor? and 4) How is a failed induction defined? Methods. We performed a systematic review to answer the Key Questions. We searched MEDLINE® (1966-2007) and bibliographies of prior systematic reviews and the included studies for English language studies of maternal and fetal outcomes after elective induction of labor. We evaluated the quality of included studies. When possible, we synthesized study data using random effects models. We also evaluated the potential clinical outcomes and cost-effectiveness of elective induction of labor versus expectant management of pregnancy labor at 41, 40, and 39 weeks’ gestation using decision- analytic models. Results. Our searches identified 3,722 potentially relevant articles, of which 76 articles met inclusion criteria. Nine RCTs compared expectant management with elective induction of labor. We found that overall, expectant management of pregnancy was associated with an approximately 22 percent higher odds of cesarean delivery than elective induction of labor (OR 1.22, 95 percent CI 1.07-1.39; absolute risk difference 1.9, 95 percent CI: 0.2-3.7 percent). The majority of these studies were in women at or beyond 41 weeks of gestation (OR 1.21, 95 percent CI 1.01-1.46). In studies of women at or beyond 41 weeks of gestation, the evidence was rated as moderate because of the size and number of studies and consistency of the findings. Among women less than 41 weeks of gestation, there were three trials which reported no difference in risk of cesarean delivery among women who were induced as compared to expectant management (OR 1.73; 95 percent CI: 0.67-4.5, P=0.26), but all of these trials were small, non-U.S., older, and of poor quality. When we stratified the analysis by country, we found that the odds of cesarean delivery were higher in women who were expectantly managed compared to v elective induction of labor in studies conducted outside the U.S. (OR 1.22; 95 percent CI 1.05-1.40) but were not statistically different in studies conducted in the U.S. (OR 1.28; 95 percent CI 0.65-2.49). Women who were expectantly managed were also more likely to have meconium-stained amniotic fluid than those who were electively induced (OR 2.04; 95 percent CI: 1.34-3.09). Observational studies reported a consistently lower risk of cesarean delivery among women who underwent spontaneous labor (6 percent) compared with women who had an elective induction of labor (8 percent) with a statistically significant decrease when combined (OR 0.63; 95 percent CI: 0.49-0.79), but again utilized the wrong control group and did not appropriately adjust for gestational age. We found moderate to high quality evidence that increased parity, a more favorable cervical status as assessed by a higher Bishop score, and decreased gestational age were associated with successful labor induction (58 percent of the included studies defined success as achieving a vaginal delivery anytime after the onset of the induction of labor; in these instances, induction was considered a failure when it led to a cesarean delivery). In the decision analytic model, we utilized a baseline assumption of no difference in cesarean delivery between the two arms as there was no statistically significant difference in the U.S. studies or in women prior to 41 0/7 weeks of gestation. In each of the models, women who were electively induced had better overall outcomes among both mothers and neonates as estimated by total quality-adjusted life years (QALYs) as well as by reduction in specific perinatal outcomes such as shoulder dystocia, meconium aspiration syndrome, and preeclampsia. Additionally, induction of labor was cost-effective at $10,789 per QALY with elective induction of labor at 41 weeks of gestation, $9,932 per QALY at 40 weeks of gestation, and $20,222 per QALY at 39 weeks of gestation utilizing a cost-effectiveness threshold of $50,000 per QALY. At 41 weeks of gestation, these results were generally robust to variations in the assumed ranges in univariate and multi-way sensitivity analyses. However, the findings of cost-effectiveness at 40 and 39 weeks of gestation were not robust to the ranges of the assumptions. In addition, the strength of evidence for some model inputs was low, therefore our analyses are exploratory rather than definitive. Conclusions. Randomized controlled trials suggest that elective induction of labor at 41 weeks of gestation and beyond may be associated with a decrease in both the risk of cesarean delivery and of meconium-stained amniotic fluid.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    257 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us